Departamento de Química Inorgánica and Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain.
Inorg Chem. 2011 Jan 3;50(1):285-98. doi: 10.1021/ic101934t. Epub 2010 Dec 8.
The reaction of NBu(4)[(C(6)F(5))(2)Pt(μ-PPh(2))(2)Pd(μ-PPh(2))(2)Pt(C(6)F(5))(2)] (1a) with AgPPh(3) results in the oxidation of two bridging diphenylphosphanides to give the 46e species [(PPh(3))(C(6)F(5))(2)Pt(2)(μ-P(2)Ph(2))Pd(μ-PPh(2))(μ-Ph(2)P(4)-P(3)Ph(2))Pt(1)(C(6)F(5))(2)] (3). Complex 3 displays two tetracoordinated terminal platinum centers and a central Pd atom that is bonded to three P atoms and that completes its coordination sphere by a rather long (3.237 Å) dative Pt(2) → Pd bond. Complex 3 is also obtained when [(R(F))(2)Pt(μ-PPh(2))Pd(μ-PPh(2))(μ-Ph(2)P-PPh(2))Pt(R(F))(2)] (2) is reacted with PPh(3). Analogously, the addition of PPh(2)Et, CO or pyridine to 2 affords the 46e complexes of general formula [(L)(C(6)F(5))(2)Pt(2)(μ-P(2)Ph(2))Pd(μ-PPh(2))(μ-Ph(2)P(4)-P(3)Ph(2))Pt(1)(C(6)F(5))(2)] (L = PPh(2)Et, 4; L = CO, 6; L = pyridine, 7). The geometry around Pt(2) is determined by the bulkiness of L bonded to Pt. Thus, in complexes 3 (L = PPh(3)) and 4 (L = PPh(2)Et), the ligand L occupies the trans position with respect to μ-P(2), and in 6 (L = CO), the ligand L occupies the cis position with respect to μ-P(2). Interestingly, for 7 (L = py), both isomers 7-trans and 7-cis, could be isolated. Although 4 did not react with an excess of PPh(2)Et, the reaction with the less sterically demanding CH(3)CN ligand resulted in the opening of the Pt(2)-P(2)-Pd cycle with formation of the saturated 48e species [(PPh(2)Et)(C(6)F(5))(2)Pt(μ-PPh(2))Pd(MeCN)(μ-PPh(2))(μ-Ph(2)P-PPh(2))Pt(C(6)F(5))(2)] (8). The saturated 48e complex [(CO)(C(6)F(5))(2)Pt(μ-PPh(2))Pd(MeCN)(μ-PPh(2))(μ-Ph(2)P-PPh(2))Pt(C(6)F(5))(2)] (9) was obtained by acetonitrile addition to 6. Beside the hindered rotation of the pentafluorophenyl groups and a flip-flop motion of the Pd-P-Pt(1)-P-P ring observed at low T, a rotation about the Pt(2)-P(2) bond and a P-C oxidative addition/reductive elimination process occur for 3 and 4 at room temperature. A "through-space" (19)F-(31)P spin-spin coupling between an ortho-F and the P(4) is observed for complexes 3 and 4, having the C(6)F(5) groups bonded to Pt(2) in mutually trans position. The XRD structures of complexes 3, 6, 7-trans, 7-cis, 8, and 9 are described.
反应NBu(4)[(C(6)F(5))(2)Pt(μ-PPh(2))(2)Pd(μ-PPh(2))(2)Pt(C(6)F(5))(2)] (1a) 与AgPPh(3) 反应,将两个桥接二苯基膦化物氧化,得到 46e 物种[(PPh(3))(C(6)F(5))(2)Pt(2)(μ-P(2)Ph(2))Pd(μ-PPh(2))(μ-Ph(2)P(4)-P(3)Ph(2))Pt(1)(C(6)F(5))(2)] (3)。复合物 3 显示出两个四配位的终端铂中心和一个中心 Pd 原子,该原子与三个 P 原子键合,并通过一个相当长的(3.237 Å) dative Pt(2)→Pd 键完成其配位球。当[(R(F))(2)Pt(μ-PPh(2))Pd(μ-PPh(2))(μ-Ph(2)P-PPh(2))Pt(R(F))(2)] (2)与 PPh(3)反应时,也可以得到复合物 3。类似地,向 2 添加 PPh(2)Et、CO 或吡啶,得到通式为[(L)(C(6)F(5))(2)Pt(2)(μ-P(2)Ph(2))Pd(μ-PPh(2))(μ-Ph(2)P(4)-P(3)Ph(2))Pt(1)(C(6)F(5))(2)] (L = PPh(2)Et, 4; L = CO, 6; L = 吡啶,7)的 46e 配合物。Pt(2)周围的几何形状由与 Pt 键合的 L 的体积决定。因此,在复合物 3(L = PPh(3))和 4(L = PPh(2)Et)中,配体 L 占据相对于μ-P(2)的反位,而在 6(L = CO)中,配体 L 占据相对于μ-P(2)的顺位。有趣的是,对于 7(L = py),可以分离出两种异构体 7-trans 和 7-cis。尽管 4 没有与过量的 PPh(2)Et 反应,但与空间要求较低的 CH(3)CN 配体反应导致 Pt(2)-P(2)-Pd 环打开,形成饱和的 48e 物种[(PPh(2)Et)(C(6)F(5))(2)Pt(μ-PPh(2))Pd(MeCN)(μ-PPh(2))(μ-Ph(2)P-PPh(2))Pt(C(6)F(5))(2)] (8)。饱和的 48e 配合物[(CO)(C(6)F(5))(2)Pt(μ-PPh(2))Pd(MeCN)(μ-PPh(2))(μ-Ph(2)P-PPh(2))Pt(C(6)F(5))(2)] (9)通过乙腈加成到 6 中得到。除了在低温下观察到五氟苯基基团的受阻旋转和 Pd-P-Pt(1)-P-P 环的翻转运动外,在室温下,3 和 4 还发生了关于 Pt(2)-P(2)键的旋转和 P-C 氧化加成/还原消除过程。复合物 3 和 4 中,观察到一个“通过空间”(19)F-(31)P 自旋-自旋偶合,其中 C(6)F(5)基团与 Pt(2)处于相互反位。复合物 3、6、7-trans、7-cis、8 和 9 的 XRD 结构被描述。