School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney 2052, Australia.
Evolution. 2011 May;65(5):1400-12. doi: 10.1111/j.1558-5646.2010.01209.x. Epub 2010 Dec 28.
Linking naturally occurring genotypic variation to the organismal phenotype is critical to our understanding of, and ability to, model biological processes such as adaptation to novel environments, disease, and aging. Rarely, however, does a simple mutation cause a single simple observable trait. Rather it is more common for a mutation to elicit an entangled web of responses. Here, we employ biochemistry as the thread to link a naturally occurring two amino acid deletion in a nuclear encoded mitochondrial protein with physiological benefits and costs in the fly Drosophila simulans. This nuclear encoded gene produces a protein that is imported into the mitochondrion and forms a subunit of complex IV (cytochrome c oxidase, or cox) of the electron transport chain. We observe that flies homozygous for the deletion have an advantage when young but pay a cost later in life. These data show that the organism responds to the deletion in a complex manner that gives insight into the mechanisms that influence mitochondrial bioenergetics and aspects of organismal physiology.
将自然发生的基因型变异与生物体表型联系起来,对于我们理解和模拟生物过程(如适应新环境、疾病和衰老)至关重要。然而,很少有简单的突变会导致单一的可观察特征。相反,更常见的是突变会引起一连串复杂的反应。在这里,我们利用生物化学作为线索,将核编码线粒体蛋白中自然发生的两个氨基酸缺失与果蝇 simulans 的生理益处和成本联系起来。这个核编码基因产生的蛋白质被导入线粒体,并形成电子传递链复合物 IV(细胞色素 c 氧化酶或 cox)的一个亚基。我们观察到,纯合缺失的果蝇在年轻时具有优势,但在生命后期会付出代价。这些数据表明,生物体以复杂的方式对缺失做出反应,这为影响线粒体生物能量学和生物体生理学各个方面的机制提供了深入了解。