Suppr超能文献

Bmp 信号通过 miRNA 介导的机制调节心肌祖细胞向心肌分化。

Bmp signaling regulates myocardial differentiation from cardiac progenitors through a MicroRNA-mediated mechanism.

机构信息

Institute of Biosciences and Technology, Texas A&M System Health Science Center, Houston, 77030, USA.

出版信息

Dev Cell. 2010 Dec 14;19(6):903-12. doi: 10.1016/j.devcel.2010.10.022.

Abstract

MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression posttranscriptionally. We investigated the hypothesis that bone morphogenetic protein (Bmp) signaling regulates miRNAs in cardiac progenitor cells. Bmp2 and Bmp4 regulate OFT myocardial differentiation via regulation of the miRNA-17-92 cluster. In Bmp mutant embryos, myocardial differentiation was delayed, and multiple miRNAs encoded by miRNA-17-92 were reduced. We uncovered functional miRNA-17-92 seed sequences within the 3' UTR of cardiac progenitor genes such as Isl1 and Tbx1. In both Bmp and miRNA-17-92 mutant embryos, Isl1 and Tbx1 expression failed to be correctly downregulated. Transfection experiments indicated that miRNA-17 and miRNA-20a directly repressed Isl1 and Tbx1. Genetic interaction studies uncovered a synergistic interaction between miRNA-17-92 cluster and Bmp4, providing direct in vivo evidence for the Bmp-miRNA-17-92 regulatory pathway. Our findings indicate that Bmp signaling directly regulates a miRNA-mediated effector mechanism that downregulates cardiac progenitor genes and enhances myocardial differentiation.

摘要

微小 RNA(miRNAs)是一种小型非编码 RNA,可在后转录水平调控基因表达。我们提出假设,骨形态发生蛋白(Bmp)信号转导可调节心脏祖细胞中的 miRNAs。Bmp2 和 Bmp4 通过调节 miRNA-17-92 簇来调节 OFT 心肌分化。在 Bmp 突变胚胎中,心肌分化延迟,多个 miRNA-17-92 编码的 miRNA 减少。我们在心脏祖细胞基因如 Isl1 和 Tbx1 的 3'UTR 内发现了功能性 miRNA-17-92 种子序列。在 Bmp 和 miRNA-17-92 突变胚胎中,Isl1 和 Tbx1 的表达未能被正确下调。转染实验表明,miRNA-17 和 miRNA-20a 可直接抑制 Isl1 和 Tbx1。遗传相互作用研究揭示了 miRNA-17-92 簇与 Bmp4 之间的协同相互作用,为 Bmp-miRNA-17-92 调控途径提供了直接的体内证据。我们的研究结果表明,Bmp 信号转导可直接调节 miRNA 介导的效应机制,下调心脏祖细胞基因并增强心肌分化。

相似文献

2
Bmp Signaling Regulates Hand1 in a Dose-Dependent Manner during Heart Development.
Int J Mol Sci. 2021 Sep 11;22(18):9835. doi: 10.3390/ijms22189835.
3
Isl1Cre reveals a common Bmp pathway in heart and limb development.
Development. 2006 Apr;133(8):1575-85. doi: 10.1242/dev.02322.
4
Bmp signaling exerts opposite effects on cardiac differentiation.
Circ Res. 2012 Feb 17;110(4):578-87. doi: 10.1161/CIRCRESAHA.111.261172. Epub 2012 Jan 12.
5
Bmp signaling represses Vegfa to promote outflow tract cushion development.
Development. 2013 Aug;140(16):3395-402. doi: 10.1242/dev.097360. Epub 2013 Jul 17.
6
Wnt/β-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells.
Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10921-6. doi: 10.1073/pnas.1121236109. Epub 2012 Jun 18.
7
Bmp signaling regulates a dose-dependent transcriptional program to control facial skeletal development.
Development. 2012 Feb;139(4):709-19. doi: 10.1242/dev.073197. Epub 2012 Jan 4.
8
Functional cardiomyocytes derived from Isl1 cardiac progenitors via Bmp4 stimulation.
PLoS One. 2014 Dec 18;9(12):e110752. doi: 10.1371/journal.pone.0110752. eCollection 2014.
10
A BMP4-p38 MAPK signaling axis controls ISL1 protein stability and activity during cardiogenesis.
Stem Cell Reports. 2021 Aug 10;16(8):1894-1905. doi: 10.1016/j.stemcr.2021.06.017. Epub 2021 Jul 29.

引用本文的文献

2
Haploinsufficient variants in SMAD5 are associated with isolated congenital heart disease.
HGG Adv. 2025 Jul 5;6(4):100478. doi: 10.1016/j.xhgg.2025.100478.
3
The Pleiotropic Role of the MicroRNA-17-92 Cluster in Cardiovascular Diseases and Cancer.
Rev Cardiovasc Med. 2025 May 27;26(5):27966. doi: 10.31083/RCM27966. eCollection 2025 May.
5
The molecular mechanisms of cardiac development and related diseases.
Signal Transduct Target Ther. 2024 Dec 23;9(1):368. doi: 10.1038/s41392-024-02069-8.
6
Signaling Pathways Governing Cardiomyocyte Differentiation.
Genes (Basel). 2024 Jun 18;15(6):798. doi: 10.3390/genes15060798.
7
miRNAs in Heart Development and Disease.
Int J Mol Sci. 2024 Jan 30;25(3):1673. doi: 10.3390/ijms25031673.
8
The miR-17-92 cluster in cardiac health and disease.
Birth Defects Res. 2024 Jan;116(1):e2273. doi: 10.1002/bdr2.2273. Epub 2023 Nov 20.
9
Regulatory Mechanisms That Guide the Fetal to Postnatal Transition of Cardiomyocytes.
Cells. 2023 Sep 21;12(18):2324. doi: 10.3390/cells12182324.
10
Cardiac microRNAs: diagnostic and therapeutic potential.
Arch Med Sci. 2023 Aug 25;19(5):1360-1381. doi: 10.5114/aoms/169775. eCollection 2023.

本文引用的文献

1
Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries.
Circ Res. 2010 Feb 19;106(3):495-503. doi: 10.1161/CIRCRESAHA.109.201665. Epub 2009 Dec 24.
2
The role of secondary heart field in cardiac development.
Dev Biol. 2009 Dec 15;336(2):137-44. doi: 10.1016/j.ydbio.2009.10.009. Epub 2009 Oct 14.
3
Generation of functional ventricular heart muscle from mouse ventricular progenitor cells.
Science. 2009 Oct 16;326(5951):426-9. doi: 10.1126/science.1177350.
5
Tbx1 regulates proliferation and differentiation of multipotent heart progenitors.
Circ Res. 2009 Oct 23;105(9):842-51. doi: 10.1161/CIRCRESAHA.109.200295. Epub 2009 Sep 10.
6
MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury.
Genes Dev. 2009 Sep 15;23(18):2166-78. doi: 10.1101/gad.1842409. Epub 2009 Aug 31.
7
Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster.
J Clin Invest. 2009 Sep;119(9):2634-47. doi: 10.1172/JCI38864. Epub 2009 Aug 17.
8
MicroRNA MiR-17 retards tissue growth and represses fibronectin expression.
Nat Cell Biol. 2009 Aug;11(8):1031-8. doi: 10.1038/ncb1917. Epub 2009 Jul 26.
9
A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate.
Nat Cell Biol. 2009 Aug;11(8):951-7. doi: 10.1038/ncb1906. Epub 2009 Jul 20.
10
miR-145 and miR-143 regulate smooth muscle cell fate and plasticity.
Nature. 2009 Aug 6;460(7256):705-10. doi: 10.1038/nature08195. Epub 2009 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验