Department of Biology, Brandeis University, Waltham, MA 02454-9110, USA.
DNA Repair (Amst). 2011 Mar 7;10(3):260-70. doi: 10.1016/j.dnarep.2010.11.007. Epub 2010 Dec 10.
Azidothymidine (AZT, zidovudine) is used to treat HIV-AIDS and prevent maternal transmission to newborns. Because the azido group replaces the 3' OH of thymidine, AZT is believed to act as a chain terminator during reverse transcription of viral RNA into DNA, although other mechanisms of viral inhibition have been suggested. There is evidence that AZT is genotoxic, particularly to the mitochondria. In this study, we use the bacterium Escherichia coli to investigate the mechanism of AZT toxicity and the cellular mechanisms that aid survival. We show that that replication arrests quickly after treatment, accompanied by induction of the SOS DNA damage response. AZT appears to produce single-strand DNA gaps, as evident by RecF-dependent induction of the SOS response and visualization of single-strand DNA binding protein foci within the cell. Some of these gaps must be converted to breaks, since mutants in the RecBCD nuclease, required for recombinational double-strand break repair, are highly sensitive to AZT. Blocks in the late recombination functions, the RuvAB branch migration helicase and RuvC Holliday junction endonuclease, caused extreme AZT sensitivity that could be relieved by mutations in the early recombination functions, such as RecF, suggesting gaps engage in recombination reactions. Finally, our data suggest that the proofreading exonucleases of DNA polymerases play little role in AZT tolerance. Rather, Exonuclease III appears to be the enzyme that removes AZT: xthA mutants are highly AZT-sensitive, with a sustained SOS response, and overproduction of the enzyme protects wild-type cells. Our findings suggest that incorporation of AZT into human nuclear and mitochondrial DNA has the potential to promote genetic instability and toxicity through the production of ssDNA gaps and dsDNA breaks, and predicts that the human Exonuclease III ortholog, APE1, will be important for drug tolerance.
叠氮胸苷(AZT,齐多夫定)用于治疗 HIV-AIDS 并防止母婴传播给新生儿。由于叠氮基团取代了胸苷的 3'OH,AZT 被认为在病毒 RNA 逆转录为 DNA 时充当链终止子,尽管已经提出了其他病毒抑制机制。有证据表明 AZT 具有遗传毒性,特别是对线粒体。在这项研究中,我们使用细菌大肠杆菌来研究 AZT 毒性的机制和有助于生存的细胞机制。我们表明,治疗后复制迅速停滞,同时诱导 SOS DNA 损伤反应。AZT 似乎产生单链 DNA 缺口,这可以通过 RecF 依赖性诱导 SOS 反应和细胞内单链 DNA 结合蛋白焦点的可视化来证明。由于需要重组双链断裂修复的 RecBCD 核酸内切酶的突变体对 AZT 高度敏感,因此这些缺口中的一些必须转换为断裂。在晚期重组功能、RuvAB 分支迁移解旋酶和 RuvC Holiday 连接内切酶中出现的阻断导致对 AZT 的极端敏感性,这种敏感性可以通过早期重组功能(如 RecF)的突变来缓解,这表明缺口参与重组反应。最后,我们的数据表明 DNA 聚合酶的校对外切核酸酶在 AZT 耐受中作用不大。相反,外切核酸酶 III 似乎是去除 AZT 的酶:xthA 突变体对 AZT 高度敏感,具有持续的 SOS 反应,并且该酶的过表达可保护野生型细胞。我们的研究结果表明,AZT 掺入人核和线粒体 DNA 有可能通过产生单链 DNA 缺口和双链 DNA 断裂来促进遗传不稳定性和毒性,并预测人类外切核酸酶 III 同源物 APE1 将对药物耐受很重要。