New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, 08854, USA.
IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):204-12. doi: 10.1109/TNSRE.2010.2098047. Epub 2010 Dec 10.
Next-generation neuroprosthetic limbs will require a reliable long-term neural interface to residual nerves in the peripheral nervous system (PNS). To this end, we have developed novel biocompatible materials and a fabrication technique to create high site-count microelectrodes for stimulating and recording from regenerated peripheral nerves. Our electrodes are based on a biodegradable tyrosine-derived polycarbonate polymer system with suitable degradation and erosion properties and a fabrication technique for deployment of the polymer in a porous, degradable, regenerative, multiluminal, multielectrode conduit. The in vitro properties of the polymer and the electrode were tuned to retain mechanical strength for over 24 days and to completely degrade and erode within 220 days. The fabrication technique resulted in a multiluminal conduit with at least 10 functioning electrodes maintaining recording site impedance in the single-digit kOhm range. Additionally, in vivo results showed that neural signals could be recorded from these devices starting at four weeks postimplantation and that signal strength increased over time. We conclude that our biodegradable regenerative-type neural interface is a good candidate for chronic high fidelity recording electrodes for integration with regenerated peripheral nerves.
下一代神经假体肢体将需要一个可靠的长期神经接口来与周围神经系统 (PNS) 中的残留神经连接。为此,我们开发了新型的生物相容性材料和制造技术,以创建用于刺激和记录再生周围神经的高位点计数微电极。我们的电极基于可生物降解的酪氨酸衍生聚碳酸酯聚合物系统,具有合适的降解和侵蚀特性,以及一种用于将聚合物部署在多孔、可降解、可再生、多腔、多电极导管中的制造技术。聚合物和电极的体外性能经过调整,可保持超过 24 天的机械强度,并在 220 天内完全降解和侵蚀。制造技术产生了一个至少有 10 个功能电极的多腔导管,保持记录电极的阻抗在个位数千欧姆范围内。此外,体内结果表明,从植入后四周开始,可以从这些设备中记录到神经信号,并且信号强度随时间增加。我们得出结论,我们的可生物降解的再生型神经接口是与再生的周围神经集成的慢性高保真记录电极的良好候选物。