Suppr超能文献

一种基于局部密度和随机游走的蛋白质相互作用网络中复合物检测方法。

A method based on local density and random walks for complexes detection in protein interaction networks.

作者信息

Yu Liang, Gao Lin, Li Kui

机构信息

School of Computer Science and Technology, Xidian University, Xi'an, P R China.

出版信息

J Bioinform Comput Biol. 2010 Dec;8 Suppl 1:47-62. doi: 10.1142/s0219720010005191.

Abstract

In this paper, we present a method based on local density and random walks (LDRW) for core-attachment complexes detection in protein-protein interaction (PPI) networks whether they are weighted or not. Our LDRW method consists of two stages. Firstly, it finds all the protein-complex cores based on local density of subnetwork. Then it uses random walks with restarts for finding the attachment proteins of each detected core to form complexes. We evaluate the effectiveness of our method using two different yeast PPI networks and validate the biological significance of the predicted protein complexes using known complexes in the Munich Information Center for Protein Sequence (MIPS) and Gene Ontology (GO) databases. We also perform a comprehensive comparison between our method and other existing methods. The results show that our method can find more protein complexes with high biological significance and obtains a significant improvement. Furthermore, our method is able to identify biologically significant overlapped protein complexes.

摘要

在本文中,我们提出了一种基于局部密度和随机游走(LDRW)的方法,用于检测蛋白质-蛋白质相互作用(PPI)网络中的核心附着复合物,无论该网络是否加权。我们的LDRW方法包括两个阶段。首先,它基于子网的局部密度找到所有蛋白质复合物核心。然后,它使用带重启的随机游走找到每个检测到的核心的附着蛋白以形成复合物。我们使用两个不同的酵母PPI网络评估了我们方法的有效性,并使用慕尼黑蛋白质序列信息中心(MIPS)和基因本体(GO)数据库中的已知复合物验证了预测蛋白质复合物的生物学意义。我们还对我们的方法与其他现有方法进行了全面比较。结果表明,我们的方法可以找到更多具有高生物学意义的蛋白质复合物,并取得了显著改进。此外,我们的方法能够识别具有生物学意义的重叠蛋白质复合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验