School of Computer Science and Technology, Xidian University, No. 2 Street Taibai Road, ShaanXi, Xi’an, P. R. China.
Proteomics. 2011 Oct;11(19):3826-34. doi: 10.1002/pmic.201100194. Epub 2011 Aug 23.
In this paper, we present a method for core-attachment complexes identification based on maximal frequent patterns (CCiMFP) in yeast protein-protein interaction (PPI) networks. First, we detect subgraphs with high degree as candidate protein cores by mining maximal frequent patterns. Then using topological and functional similarities, we combine highly similar protein cores and filter insignificant ones. Finally, the core-attachment complexes are formed by adding attachment proteins to each significant core. We experimentally evaluate the performance of our method CCiMFP on yeast PPI networks. Using gold standard sets of protein complexes, Gene Ontology (GO), and localization annotations, we show that our method gains an improvement over the previous algorithms in terms of precision, recall, and biological significance of the predicted complexes. The colocalization scores of our predicted complex sets are higher than those of two known complex sets. Moreover, our method can detect GO-enriched complexes with disconnected cores compared with other methods based on the subgraph connectivity.
在本文中,我们提出了一种基于酵母蛋白-蛋白相互作用(PPI)网络中最大频繁模式(CCiMFP)的核心附着复合物识别方法。首先,我们通过挖掘最大频繁模式来检测具有高度数的子图作为候选蛋白核心。然后,我们利用拓扑和功能相似性,将高度相似的蛋白核心进行组合,并过滤掉不重要的核心。最后,通过向每个显著核心添加附着蛋白来形成核心附着复合物。我们在酵母 PPI 网络上对我们的方法 CCiMFP 进行了实验评估。使用蛋白质复合物的黄金标准集、基因本体论(GO)和定位注释,我们表明,与之前的算法相比,我们的方法在预测复合物的精度、召回率和生物意义方面都有所提高。我们预测的复合物集的共定位分数高于两个已知复合物集的分数。此外,与基于子图连通性的其他方法相比,我们的方法可以检测到具有不连通核心的 GO 富集复合物。