Suppr超能文献

基于判别核偏最小二乘法从基因表达谱进行癌症分类。

Cancer classification from the gene expression profiles by Discriminant Kernel-PLS.

作者信息

Tang Kai-Lin, Yao Wei-Jia, Li Tong-Hua, Li Yi-Xue, Cao Zhi-Wei

机构信息

Shanghai Center for Bioinformation and Technology, Shanghai, P R China.

出版信息

J Bioinform Comput Biol. 2010 Dec;8 Suppl 1:147-60. doi: 10.1142/s0219720010005130.

Abstract

Cancer diagnosis depending on microarray technology has drawn more and more attention in the past few years. Accurate and fast diagnosis results make gene expression profiling produced from microarray widely used by a large range of researchers. Much research work highlights the importance of gene selection and gains good results. However, the minimum sets of genes derived from different methods are seldom overlapping and often inconsistent even for the same set of data, partially because of the complexity of cancer disease. In this paper, cancer classification was attempted in an alternative way of the whole gene expression profile for all samples instead of partial gene sets. Here, the three common sets of data were tested by NIPALS-KPLS method for acute leukemia, prostate cancer and lung cancer respectively. Compared to other conventional methods, the results showed wide improvement in classification accuracy. This paper indicates that sample profile of gene expression may be explored as a better indicator for cancer classification, which deserves further investigation.

摘要

在过去几年里,基于微阵列技术的癌症诊断越来越受到关注。微阵列产生的基因表达谱具有准确、快速的诊断结果,被广大研究人员广泛使用。许多研究工作都强调了基因选择的重要性,并取得了良好的成果。然而,即使对于同一组数据,不同方法得出的最小基因集很少重叠,且往往不一致,部分原因是癌症疾病的复杂性。本文尝试采用另一种方式,即针对所有样本的全基因表达谱而非部分基因集进行癌症分类。在这里,分别用NIPALS-KPLS方法对急性白血病、前列腺癌和肺癌的三组常见数据进行了测试。与其他传统方法相比,结果显示分类准确率有了显著提高。本文表明,基因表达的样本谱可作为癌症分类的更好指标加以探索,这值得进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验