Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
J Biol Chem. 2011 Feb 25;286(8):6033-9. doi: 10.1074/jbc.M110.158154. Epub 2010 Dec 14.
Mammalian pre-mRNA alternative splicing mechanisms are typically studied using artificial minigenes in cultured cells, conditions that may not accurately reflect the physiological context of either the pre-mRNA or the splicing machinery. Here, we describe a strategy to investigate splicing of normal endogenous full-length pre-mRNAs under physiological conditions in live mice. This approach employs antisense vivo-morpholinos (vMOs) to mask cis-regulatory sequences or to disrupt splicing factor expression, allowing functional evaluation of splicing regulation in vivo. We applied this strategy to gain mechanistic insight into alternative splicing events involving exons 2 and 16 (E2 and E16) that control the structure and function of cytoskeletal protein 4.1R. In several mouse tissues, inclusion of E16 was substantially inhibited by interfering with a splicing enhancer mechanism using a target protector morpholino that blocked Fox2-dependent splicing enhancers in intron 16 or a splice-blocking morpholino that disrupted Fox2 expression directly. For E2, alternative 3'-splice site choice is coordinated with upstream promoter use across a long 5'-intron such that E1A splices almost exclusively to the distal acceptor (E2dis). vMOs were used to test the in vivo relevance of a deep intron element previously proposed to determine use of E2dis via a two-step intrasplicing model. Two independent vMOs designed against this intronic regulatory element inhibited intrasplicing, robustly switching E1A splicing to the proximal acceptor (E2prox). This finding strongly supports the in vivo physiological relevance of intrasplicing. vMOs represent a powerful tool for alternative splicing studies in vivo and may facilitate exploration of alternative splicing networks in vivo.
哺乳动物前体 mRNA 可变剪接机制通常在培养细胞中使用人工 minigene 进行研究,但这些条件可能无法准确反映前体 mRNA 或剪接机制的生理环境。在这里,我们描述了一种在活小鼠体内生理条件下研究正常内源性全长前体 mRNA 剪接的策略。该方法采用反义 vivo-morpholinos(vMOs)来屏蔽顺式调控序列或破坏剪接因子表达,从而可以在体内对剪接调控进行功能评估。我们应用这种策略深入了解涉及外显子 2 和 16(E2 和 E16)的可变剪接事件,这些外显子控制细胞骨架蛋白 4.1R 的结构和功能。在几种小鼠组织中,通过使用靶向保护 morpholino 阻断 Fox2 依赖性剪接增强子或直接破坏 Fox2 表达的剪接阻断 morpholino 来干扰剪接增强子机制,E16 的包含被大大抑制。对于 E2,替代 3'-剪接位点的选择与上游启动子的使用相协调,跨越一个长 5'-内含子,使得 E1A 几乎专门剪接到远端受体(E2dis)。vMO 用于测试先前提出的通过两步内含子剪接模型确定 E2dis 使用的深内含子元件的体内相关性。针对该内含子调节元件设计的两个独立 vMO 抑制内含子剪接,从而将 E1A 剪接强烈切换到近端受体(E2prox)。这一发现强烈支持内含子剪接的体内生理相关性。vMO 是体内可变剪接研究的有力工具,可能有助于探索体内可变剪接网络。