Suppr超能文献

相互依存关系控制核糖体小亚基组装的多结构域架构。

Interdependencies govern multidomain architecture in ribosomal small subunit assembly.

机构信息

Department of Biology, University of Rochester, Rochester, New York 14627, USA.

出版信息

RNA. 2011 Feb;17(2):263-77. doi: 10.1261/rna.2332511. Epub 2010 Dec 14.

Abstract

The 30S subunit is composed of four structural domains, the body, platform, head, and penultimate/ultimate stems. The functional integrity of the 30S subunit is dependent upon appropriate assembly and precise orientation of all four domains. We examined 16S rRNA conformational changes during in vitro assembly using directed hydroxyl radical probing mediated by Fe(II)-derivatized ribosomal protein (r-protein) S8. R-protein S8 binds the central domain of 16S rRNA directly and independently and its iron derivatized substituents have been shown to mediate cleavage in three domains of 16S rRNA, thus making it an ideal probe to monitor multidomain orientation during assembly. Cleavages in minimal ribonucleoprotein (RNP) particles formed with Fe(II)-S8 and 16S rRNA alone were compared with that in the context of the fully assembled subunit. The minimal binding site of S8 at helix 21 exists in a structure similar to that observed in the mature subunit, in the absence of other r-proteins. However, the binding site of S8 at the junction of helices 25-26a, which is transcribed after helix 21, is cleaved with differing intensities in the presence and absence of other r-proteins. Also, assembly of the body helps establish an architecture approximating, but perhaps not identical, to the 30S subunit at helix 12 and the 5' terminus. Moreover, the assembly or orientation of the neck is dependent upon assembly of both the head and the body. Thus, a complex interrelationship is observed between assembly events of independent domains and the incorporation of primary binding proteins during 30S subunit formation.

摘要

30S 亚基由四个结构域组成,分别是主体、平台、头部和倒数第二/最后茎部。30S 亚基的功能完整性取决于所有四个结构域的适当组装和精确取向。我们使用 Fe(II)衍生的核糖体蛋白 (r-protein) S8 介导的定向羟基自由基探测,研究了体外组装过程中 16S rRNA 的构象变化。r-protein S8 直接且独立地结合 16S rRNA 的中心结构域,其铁衍生取代基已被证明可在 16S rRNA 的三个结构域中进行切割,因此使其成为监测组装过程中多结构域取向的理想探针。用 Fe(II)-S8 和单独的 16S rRNA 形成的最小核糖核蛋白 (RNP) 颗粒中的切割与完全组装的亚基背景下的切割进行了比较。S8 在螺旋 21 上的最小结合位点存在于与成熟亚基中观察到的结构相似的结构中,而不存在其他 r 蛋白。然而,S8 在螺旋 25-26a 交界处的结合位点,在转录后存在于螺旋 21 之后,在存在和不存在其他 r 蛋白的情况下,其切割强度不同。此外,主体的组装有助于建立一种类似于 12 号螺旋和 5' 末端的 30S 亚基的架构。此外,颈部的组装或取向取决于头部和主体的组装。因此,在 30S 亚基形成过程中,独立结构域的组装事件与主要结合蛋白的掺入之间存在复杂的相互关系。

相似文献

1
Interdependencies govern multidomain architecture in ribosomal small subunit assembly.
RNA. 2011 Feb;17(2):263-77. doi: 10.1261/rna.2332511. Epub 2010 Dec 14.
3
Assembly of the 5' and 3' minor domains of 16S ribosomal RNA as monitored by tethered probing from ribosomal protein S20.
J Mol Biol. 2008 Feb 8;376(1):92-108. doi: 10.1016/j.jmb.2007.10.083. Epub 2007 Nov 6.
4
Ribosomal protein-dependent orientation of the 16 S rRNA environment of S15.
J Mol Biol. 2004 Jan 30;335(5):1173-85. doi: 10.1016/j.jmb.2003.11.031.
6
Role of Era in assembly and homeostasis of the ribosomal small subunit.
Nucleic Acids Res. 2019 Sep 5;47(15):8301-8317. doi: 10.1093/nar/gkz571.
8
Assembly and structure of the SSU processome-a nucleolar precursor of the small ribosomal subunit.
Curr Opin Struct Biol. 2018 Apr;49:85-93. doi: 10.1016/j.sbi.2018.01.008. Epub 2018 Feb 4.
10
RNA-protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA.
Science. 1989 May 19;244(4906):783-90. doi: 10.1126/science.2658053.

引用本文的文献

1
Transcription Increases the Cooperativity of Ribonucleoprotein Assembly.
Cell. 2019 Nov 27;179(6):1370-1381.e12. doi: 10.1016/j.cell.2019.11.007. Epub 2019 Nov 21.
2
Limits in accuracy and a strategy of RNA structure prediction using experimental information.
Nucleic Acids Res. 2019 Jun 20;47(11):5563-5572. doi: 10.1093/nar/gkz427.
4
Ribosome RNA assembly intermediates visualized in living cells.
Biochemistry. 2014 May 20;53(19):3237-47. doi: 10.1021/bi500198b. Epub 2014 May 12.
5
The impact of transcriptional tuning on in vitro integrated rRNA transcription and ribosome construction.
Nucleic Acids Res. 2014 Jun;42(10):6774-85. doi: 10.1093/nar/gku307. Epub 2014 May 3.
7
The N-terminal extension of S12 influences small ribosomal subunit assembly in Escherichia coli.
RNA. 2014 Mar;20(3):321-30. doi: 10.1261/rna.042432.113. Epub 2014 Jan 17.

本文引用的文献

1
Appropriate maturation and folding of 16S rRNA during 30S subunit biogenesis are critical for translational fidelity.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4567-72. doi: 10.1073/pnas.0912305107. Epub 2010 Feb 22.
2
A complex assembly landscape for the 30S ribosomal subunit.
Annu Rev Biophys. 2009;38:197-215. doi: 10.1146/annurev.biophys.050708.133615.
3
S16 throws a conformational switch during assembly of 30S 5' domain.
Nat Struct Mol Biol. 2009 Apr;16(4):438-45. doi: 10.1038/nsmb.1585. Epub 2009 Apr 3.
4
Fidelity at the molecular level: lessons from protein synthesis.
Cell. 2009 Feb 20;136(4):746-62. doi: 10.1016/j.cell.2009.01.036.
5
Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly.
Nature. 2008 Oct 30;455(7217):1268-72. doi: 10.1038/nature07298. Epub 2008 Sep 10.
6
A conserved rRNA methyltransferase regulates ribosome biogenesis.
Nat Struct Mol Biol. 2008 May;15(5):534-6. doi: 10.1038/nsmb.1408. Epub 2008 Apr 6.
7
Assembly of the 5' and 3' minor domains of 16S ribosomal RNA as monitored by tethered probing from ribosomal protein S20.
J Mol Biol. 2008 Feb 8;376(1):92-108. doi: 10.1016/j.jmb.2007.10.083. Epub 2007 Nov 6.
9
30S ribosomal subunits can be assembled in vivo without primary binding ribosomal protein S15.
RNA. 2006 Jul;12(7):1229-39. doi: 10.1261/rna.2262106. Epub 2006 May 8.
10
An assembly landscape for the 30S ribosomal subunit.
Nature. 2005 Dec 1;438(7068):628-32. doi: 10.1038/nature04261.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验