Suppr超能文献

Characterization of ribonuclease P from the archaebacterium Sulfolobus solfataricus.

作者信息

Darr S C, Pace B, Pace N R

机构信息

Department of Biology, Indiana University, Bloomington 47405.

出版信息

J Biol Chem. 1990 Aug 5;265(22):12927-32.

PMID:2115885
Abstract

Ribonuclease P is the endonuclease that removes the leader fragments from the 5'-ends of precursor tRNAs. The enzyme isolated from eubacteria contains a catalytic RNA subunit. RNAs also copurify with eukaryotic RNase P, although catalysis by those RNAs has not been demonstrated. This paper reports the isolation and characterization of ribonuclease P from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Archaebacteria are a primary evolutionary lineage, distinct from both eukaryotes and eubacteria. Ribonuclease P of S. solfataricus has reaction component requirements and a Km for substrate tRNA (2.5 X 10(-7) M) that are roughly similar to those reported for eubacterial and eukaryotic ribonuclease P. The temperature optimum for the reaction is 77 degrees C, reflecting the thermophilic character of the organism. The enzyme activity is not affected by treatment with micrococcal nuclease, suggesting that there is no RNA subunit or that it is protected from nuclease action. The density of the enzyme in cesium sulfate equilibrium density gradients is 1.27 g/ml, which is similar to that of protein. However, several RNAs between 200 and 400 nucleotides in size copurify with the enzyme activity on the density gradients, and one of them remains after micrococcal nuclease treatment. These properties of the S. solfataricus enzyme are compared with those of ribonuclease P from eukaryotes and eubacteria.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验