School of Mathematics, University of Bristol, Edinburgh, UK.
Bioinformatics. 2011 Feb 15;27(4):584-6. doi: 10.1093/bioinformatics/btq694. Epub 2010 Dec 14.
Understanding the encoding and propagation of information by biochemical reaction networks and the relationship of such information processing properties to modular network structure is of fundamental importance in the study of cell signalling and regulation. However, a rigorous, automated approach for general biochemical networks has not been available, and high-throughput analysis has therefore been out of reach.
Modularization Identification by Dynamic Independence Algorithms (MIDIA) is a user-friendly, extensible R package that performs automated analysis of how information is processed by biochemical networks. An important component is the algorithm's ability to identify exact network decompositions based on both the mass action kinetics and informational properties of the network. These modularizations are visualized using a tree structure from which important dynamic conditional independence properties can be directly read. Only partial stoichiometric information needs to be used as input to MIDIA, and neither simulations nor knowledge of rate parameters are required. When applied to a signalling network, for example, the method identifies the routes and species involved in the sequential propagation of information between its multiple inputs and outputs. These routes correspond to the relevant paths in the tree structure and may be further visualized using the Input-Output Path Matrix tool. MIDIA remains computationally feasible for the largest network reconstructions currently available and is straightforward to use with models written in Systems Biology Markup Language (SBML).
The package is distributed under the GNU General Public License and is available, together with a link to browsable Supplementary Material, at http://code.google.com/p/midia. Further information is at www.maths.bris.ac.uk/~macgb/Software.html.
理解生化反应网络中信息的编码和传播,以及这种信息处理特性与模块化网络结构的关系,是研究细胞信号转导和调控的基础。然而,对于一般的生化网络,还没有一种严格的、自动化的方法,因此高通量分析是遥不可及的。
通过动态独立性算法的模块化识别(MIDIA)是一个用户友好、可扩展的 R 包,它可以自动分析生化网络如何处理信息。一个重要的组成部分是该算法根据质量作用动力学和网络的信息属性来识别精确网络分解的能力。这些模块化结构使用树结构进行可视化,从中可以直接读取重要的动态条件独立性属性。MIDIA 只需要使用部分化学计量信息作为输入,既不需要模拟,也不需要了解速率参数。例如,当应用于信号网络时,该方法可以识别信息在多个输入和输出之间顺序传播所涉及的途径和物种。这些途径对应于树结构中的相关路径,并可以使用输入-输出路径矩阵工具进一步可视化。对于目前可用的最大网络重建,MIDIA 在计算上仍然可行,并且可以与用系统生物学标记语言(SBML)编写的模型直接使用。
该软件包根据 GNU 通用公共许可证分发,并可在 http://code.google.com/p/midia 上获得,同时提供可浏览的补充材料链接。更多信息请访问 www.maths.bris.ac.uk/~macgb/Software.html。