Suppr超能文献

肢体姿势对充血后反应的影响。

Effects of limb posture on reactive hyperemia.

机构信息

Penn State Heart and Vascular Institute, H047, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, 500 University Drive, PO Box 850, Hershey, PA 17033, USA.

出版信息

Eur J Appl Physiol. 2011 Jul;111(7):1415-20. doi: 10.1007/s00421-010-1769-z. Epub 2010 Dec 15.

Abstract

To examine the role of limb posture on vascular conductance during rapid changes in vascular transmural pressure, we determined brachial (n = 10) and femoral (n = 10) artery post-occlusive reactive hyperemic blood flow (RHBF, ultrasound/Doppler) and vascular conductance in healthy humans with each limb at three different positions-horizontal, up and down. Limb posture was varied by raising or lowering the arm or leg from the horizontal position by 45°. In both limbs, peak RHBF and vascular conductance were highest in the down or horizontal position and lowest in the up position (arm up 338 ± 38, supine 430 ± 52, down 415 ± 52 ml/min, P < 0.05; leg up 1,208 ± 88, supine 1,579 ± 130, down 1,767 ± 149 ml/min, P < 0.05). In contrast, the maximal dynamic fall in blood flow following peak RHBF (in ml/s/s) in both limbs was highest in the limb-down position and lowest with the limb elevated (P < 0.05). These data suggest that the magnitude and temporal pattern of limb reactive hyperemia is in part related to changes in vascular transmural pressure and independent of systemic blood pressure and sympathetic control.

摘要

为了研究血管跨壁压力快速变化时肢体姿势对血管传导性的作用,我们在健康人群中确定了肱动脉(n = 10)和股动脉(n = 10)的闭塞后反应性充血血流(RHBF,超声/多普勒)和血管传导性,每个肢体处于三种不同位置——水平、向上和向下。通过将手臂或腿部从水平位置抬高或降低 45°来改变肢体姿势。在两个肢体中,RHBF 和血管传导性的峰值在向下或水平位置最高,向上位置最低(手臂向上 338 ± 38,仰卧 430 ± 52,向下 415 ± 52 ml/min,P < 0.05;腿部向上 1,208 ± 88,仰卧 1,579 ± 130,向下 1,767 ± 149 ml/min,P < 0.05)。相比之下,在两个肢体中,RHBF 峰值后血流的最大动态下降(以 ml/s/s 为单位)在肢体向下位置最高,而在肢体抬高时最低(P < 0.05)。这些数据表明,肢体反应性充血的幅度和时间模式部分与血管跨壁压力的变化有关,而与系统血压和交感神经控制无关。

相似文献

1
Effects of limb posture on reactive hyperemia.
Eur J Appl Physiol. 2011 Jul;111(7):1415-20. doi: 10.1007/s00421-010-1769-z. Epub 2010 Dec 15.
2
Perfusion pressure and movement-induced hyperemia: evidence of limited vascular function and vasodilatory reserve with age.
Am J Physiol Heart Circ Physiol. 2013 Feb 15;304(4):H610-9. doi: 10.1152/ajpheart.00656.2012. Epub 2012 Dec 21.
3
Flow-mediated dilation and exercise-induced hyperaemia in highly trained athletes: comparison of the upper and lower limb vasculature.
Acta Physiol (Oxf). 2008 Jun;193(2):139-50. doi: 10.1111/j.1748-1716.2008.01834.x. Epub 2008 Feb 21.
5
Positional differences in reactive hyperemia provide insight into initial phase of exercise hyperemia.
J Appl Physiol (1985). 2015 Sep 1;119(5):569-75. doi: 10.1152/japplphysiol.01253.2013. Epub 2015 Jul 2.
6
Upright posture reduces forearm blood flow early in exercise.
Am J Physiol. 1999 May;276(5):R1434-42. doi: 10.1152/ajpregu.1999.276.5.R1434.
8
Impact of body position on central and peripheral hemodynamic contributions to movement-induced hyperemia: implications for rehabilitative medicine.
Am J Physiol Heart Circ Physiol. 2011 May;300(5):H1885-91. doi: 10.1152/ajpheart.00038.2011. Epub 2011 Feb 25.
9
Sex differences in limb vasoconstriction responses to increases in transmural pressures.
Am J Physiol Heart Circ Physiol. 2009 Jan;296(1):H186-94. doi: 10.1152/ajpheart.00248.2008. Epub 2008 Nov 21.
10
Age- and limb-related differences in the vasoconstrictor response to limb dependency are not mediated by a sympathetic mechanism in humans.
Acta Physiol (Oxf). 2012 Jul;205(3):372-80. doi: 10.1111/j.1748-1716.2012.02416.x. Epub 2012 Feb 18.

本文引用的文献

1
Central and peripheral contributors to skeletal muscle hyperemia: response to passive limb movement.
J Appl Physiol (1985). 2010 Jan;108(1):76-84. doi: 10.1152/japplphysiol.00895.2009. Epub 2009 Nov 12.
2
Local vasoconstriction in spinal cord-injured and able-bodied individuals.
J Appl Physiol (1985). 2007 Sep;103(3):1070-7. doi: 10.1152/japplphysiol.00053.2007. Epub 2007 Jul 12.
3
Hypertension: a disease of the microcirculation?
Hypertension. 2006 Dec;48(6):1012-7. doi: 10.1161/01.HYP.0000249510.20326.72. Epub 2006 Oct 23.
4
Are the arms and legs in competition for cardiac output?
Med Sci Sports Exerc. 2006 Oct;38(10):1797-803. doi: 10.1249/01.mss.0000230343.64000.ac.
5
On the local reactions of the arterial wall to changes of internal pressure.
J Physiol. 1902 May 28;28(3):220-31. doi: 10.1113/jphysiol.1902.sp000911.
6
Vasoconstriction during venous congestion: effects of venoarteriolar response, myogenic reflexes, and hemodynamics of changing perfusion pressure.
Am J Physiol Regul Integr Comp Physiol. 2005 Nov;289(5):R1354-9. doi: 10.1152/ajpregu.00804.2004. Epub 2005 Jul 7.
7
Heterogeneous vasodilator responses of human limbs: influence of age and habitual endurance training.
Am J Physiol Heart Circ Physiol. 2005 Jul;289(1):H308-15. doi: 10.1152/ajpheart.01151.2004. Epub 2005 Mar 18.
8
Effects of age on brachial artery myogenic responses in humans.
Am J Physiol Regul Integr Comp Physiol. 2004 Sep;287(3):R586-91. doi: 10.1152/ajpregu.00612.2003. Epub 2004 May 20.
9
Evidence of a myogenic response in vasomotor control of forearm and palm cutaneous microcirculations.
J Appl Physiol (1985). 2004 Aug;97(2):535-9. doi: 10.1152/japplphysiol.01299.2003. Epub 2004 Apr 16.
10
Different vasodilator responses of human arms and legs.
J Physiol. 2004 May 1;556(Pt 3):1001-11. doi: 10.1113/jphysiol.2003.059717. Epub 2004 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验