Vonakis B M, Vanderhoek J Y
Department of Biochemistry and Molecular Biology-George Washington University, School of Medicine and Health Sciences, Washington, D.C. 20037.
Biochim Biophys Acta. 1990 Jul 16;1045(2):142-6. doi: 10.1016/0005-2760(90)90143-l.
Mammalian 5-lipoxygenase systems exist in inactive or cryptic states and have to be stimulated in order to metabolize exogenous [14C]arachidonic acid to 5-HETE and leukotrienes. In most cells, both the activation process and the 5-lipoxygenase activity are calcium-dependent. However, the cryptic 5-lipoxygenase system in the murine PT-18 mast/basophil cell line, which can be stimulated by 15-hydroxyeicosatetraenoic acid (15-HETE), is unusual. Studies with fura-2 loaded PT-18 cells indicate that increases in cytosolic calcium do not appear to correlate with enhanced 5-lipoxygenase product formation. Thus, both the calcium ionophore ionomycin and arachidonic acid increase cytosolic calcium levels but have very little effect on [14C]5-HETE formation, whereas 15-HETE induces large increases in [14C]5-HETE production but no concomitant enhancement in cytosolic calcium is observed. Chelation of extracellular calcium by 3 mM EGTA resulted in a 30-40% inhibition of [14C]5-HETE formation induced by 15 HETE, whereas 3 mM EGTA has no appreciable effect on a crude PT-18 5-lipoxygenase homogenate. These results indicate that in PT-18 cells, calcium does not appear to play an important role in either the 15-HETE-induced activation process, or the enzymatic activity of the cryptic 5-lipoxygenase system.