Suppr超能文献

通过 NMR/SRLS 研究脱氧和碳氧血红蛋白的骨架动力学。

Backbone dynamics of deoxy and carbonmonoxy hemoglobin by NMR/SRLS.

机构信息

The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.

出版信息

J Phys Chem B. 2011 Jan 13;115(1):143-57. doi: 10.1021/jp107553j. Epub 2010 Dec 16.

Abstract

The slowly relaxing local structure (SRLS) approach, developed for NMR spin relaxation analysis in proteins, is applied herein to amide ¹⁵N relaxation in deoxy and carbonmonoxy hemoglobin. Experimental data including ¹⁵N T₁, T₂ and ¹⁵N-{¹H} NOE, acquired at 11.7 and 14.1 T, and 29 and 34 °C, are analyzed. The restricted local motion of the N-H bond is described in terms of the principal value (S(0)(2)) and orientation (β(D)) of an axial local ordering tensor, S, and the principal values (R(||)(L) and R(⊥)(L)) and orientation (β(O)) of an axial local diffusion tensor, R(L). The parameters c₀² (the potential coefficient in terms of which S(0)(2) is defined), R(||)(L), β(D), and β(O) are determined by data fitting; R(⊥)(L) is set equal to the global motional rate, R(C), found previously to be (5.2-5.8) × 10⁶ 1/s in the temperature range investigated. The principal axis of S is (nearly) parallel to the C(i-1)(α)-C(i)(α) axis; when the two axes are parallel, β(D) = -101.3° (in the frame used). The principal axis of R(L) is (nearly) parallel to the N-H bond; when the two axes are parallel, β(O) = -101.3°. For "rigid" N-H bonds located in secondary structure elements the best-fit parameters are S(0)(2) = 0.88-0.95 (corresponding to local potentials of 8.6-19.9 k(B)T), R(||)(L) = 10⁹-10¹⁰ 1/s, β(D) = -101.3° ± 2.0°, and β(O) = -101.3° ± 4°. For flexible N-H bonds located in loops the best-fit values are S(0)(2) = 0.75-0.80 (corresponding to local potentials of 4.5-5.5 k(B)T), R(||)(L) = (1.0-6.3) × 10⁸ 1/s, β(D) = -101.3° ± 4.0°, and β(O) = -101.3° ± 10°. These results are important in view of their physical clarity, inherent potential for further interpretation, consistency, and new qualitative insights provided (vide infra).

摘要

本文将用于蛋白质中 NMR 自旋弛豫分析的慢弛豫局部结构 (SRLS) 方法应用于脱氧和碳氧血红蛋白酰胺 ¹⁵N 弛豫的研究。在 11.7 和 14.1 T 以及 29 和 34°C 的条件下,获取了包括 ¹⁵N T₁、T₂ 和 ¹⁵N-{¹H} NOE 的实验数据,并对其进行了分析。通过轴向局部有序张量 S 的主值(S(0)(2))和取向(β(D))以及轴向局部扩散张量 R(L)的主值(R(||)(L)和 R(⊥)(L))和取向(β(O)),描述了 N-H 键的受限局部运动。参数 c₀²(用于定义 S(0)(2)的位势系数)、R(||)(L)、β(D)和β(O)是通过数据拟合确定的;R(⊥)(L)被设定为之前在研究温度范围内发现的(5.2-5.8)×10⁶ 1/s 的全局运动速率 R(C)。S 的主轴(几乎)与 C(i-1)(α)-C(i)(α)轴平行;当两个轴平行时,β(D) = -101.3°(在所使用的框架中)。R(L)的主轴(几乎)与 N-H 键平行;当两个轴平行时,β(O) = -101.3°。对于位于二级结构元件中的“刚性”N-H 键,最佳拟合参数为 S(0)(2) = 0.88-0.95(对应于 8.6-19.9 k(B)T 的局部位势),R(||)(L) = 10⁹-10¹⁰ 1/s,β(D) = -101.3° ± 2.0°,β(O) = -101.3° ± 4.0°。对于位于环中的柔性 N-H 键,最佳拟合值为 S(0)(2) = 0.75-0.80(对应于 4.5-5.5 k(B)T 的局部位势),R(||)(L) = (1.0-6.3)×10⁸ 1/s,β(D) = -101.3° ± 4.0°,β(O) = -101.3° ± 10°。这些结果具有物理清晰度、进一步解释的固有潜力、一致性以及提供的新的定性见解(见下文),非常重要。

相似文献

1
Backbone dynamics of deoxy and carbonmonoxy hemoglobin by NMR/SRLS.
J Phys Chem B. 2011 Jan 13;115(1):143-57. doi: 10.1021/jp107553j. Epub 2010 Dec 16.
2
A comparative NMR study of the polypeptide backbone dynamics of hemoglobin in the deoxy and carbonmonoxy forms.
Biochemistry. 2007 Jun 12;46(23):6795-803. doi: 10.1021/bi602654u. Epub 2007 May 12.
3
SRLS analysis of 15N relaxation from bacteriophage T4 lysozyme: a tensorial perspective that features domain motion.
J Phys Chem B. 2012 May 31;116(21):6118-27. doi: 10.1021/jp301999n. Epub 2012 May 21.
4
The eigenmode perspective of NMR spin relaxation in proteins.
J Chem Phys. 2013 Dec 14;139(22):225104. doi: 10.1063/1.4838436.
5
SRLS analysis of 15N spin relaxation from E. coli ribonuclease HI: the tensorial perspective.
J Phys Chem B. 2012 Jan 19;116(2):886-94. doi: 10.1021/jp208767s. Epub 2012 Jan 5.
8
Methyl dynamics of a Ca2+-calmodulin-peptide complex from NMR/SRLS.
J Phys Chem B. 2011 Jan 20;115(2):354-65. doi: 10.1021/jp107130m. Epub 2010 Dec 17.
10
Structural Dynamics from NMR Relaxation by SRLS Analysis: Local Geometry, Potential Energy Landscapes, and Spectral Densities.
J Phys Chem B. 2021 Jun 17;125(23):6130-6143. doi: 10.1021/acs.jpcb.1c02502. Epub 2021 Jun 8.

引用本文的文献

1
Local Ordering at Mobile Sites in Proteins from Nuclear Magnetic Resonance Relaxation: The Role of Site Symmetry.
J Phys Chem B. 2016 Mar 24;120(11):2886-98. doi: 10.1021/acs.jpcb.6b00524. Epub 2016 Mar 14.
2
A single-stranded junction modulates nanosecond motional ordering of the substrate recognition duplex of a group I ribozyme.
Chembiochem. 2013 Sep 23;14(14):1720-3. doi: 10.1002/cbic.201300376. Epub 2013 Jul 30.

本文引用的文献

1
Structural dynamics of bio-macromolecules by NMR: the slowly relaxing local structure approach.
Prog Nucl Magn Reson Spectrosc. 2010 May;56(4):360-405. doi: 10.1016/j.pnmrs.2010.03.002.
3
General theoretical/computational tool for interpreting NMR spin relaxation in proteins.
J Phys Chem B. 2009 Oct 15;113(41):13613-25. doi: 10.1021/jp9046819.
4
Domain mobility in proteins from NMR/SRLS.
J Phys Chem B. 2009 Sep 3;113(35):12050-60. doi: 10.1021/jp901522c.
6
Structural biology by NMR: structure, dynamics, and interactions.
PLoS Comput Biol. 2008 Sep 26;4(9):e1000168. doi: 10.1371/journal.pcbi.1000168.
7
Using Markov models to simulate electron spin resonance spectra from molecular dynamics trajectories.
J Phys Chem B. 2008 Sep 4;112(35):11014-27. doi: 10.1021/jp801608v. Epub 2008 Aug 12.
8
Hydrodynamic modeling of diffusion tensor properties of flexible molecules.
J Comput Chem. 2009 Jan 15;30(1):2-13. doi: 10.1002/jcc.21007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验