The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
J Phys Chem B. 2011 Jan 20;115(2):354-65. doi: 10.1021/jp107130m. Epub 2010 Dec 17.
We developed the slowly relaxing local structure (SRLS) approach for analyzing NMR spin relaxation in proteins. SRLS accounts for dynamical coupling between the tumbling of the protein and the local motion of the probe and for general tensorial properties. It is the generalization of the traditional model-free (MF) method, which does not account for mode-coupling and treats only simple tensorial properties. SRLS is applied herein to ²H relaxation of ¹³CDH₂ groups in the complex of Ca(2+)-calmodulin with the peptide smMLCKp. Literature data comprising ²H T₁ and T₂ acquired at 14.1 and 17.6 T, and 288, 295, 308, and 320 K, are used. We find that mode-coupling is a small effect for methyl dynamics. On the other hand, general tensorial properties are important. In particular, it is important to allow for the asymmetry of the local spatial restrictions, which can be represented in SRLS by a rhombic local ordering tensor with components S(0)(2) and S(2)(2). The principal axes frame of this tensor is obviously different from the axial frames of the magnetic tensors. Here, we find that -0.2 ≤ S(0)(2) ≤ 0.5 and -0.4 ≤ S(2)(2) ≤ 0. MF features a single "generalized" order parameter, S, confined to the 0-0.316 range; the local geometry is inherently simple. The parameter S is inaccurate, having absorbed unaccounted for effects, notably S(2)(2) ≠ 0. We find that the methionine methyls (the other methyl types) reorient with rates of 8.6 × 10⁹ to 21.4 × 10⁹ (0.67 × 10⁹ to 6.5 × 10⁹) 1/s. The corresponding activation energies are 10 (10-27) kJ/mol. By contrast, MF yields inaccurate effective local motional correlation times, τ(e), with nonphysical temperature dependence. Thus, the problematic S- and τ(e)-based MF picture of methyl dynamics has been replaced with an insightful physical picture based on a local ordering tensor related to structural features, and a local diffusion tensor that yields accurate activation energies.
我们开发了缓慢弛豫局部结构(SRLS)方法,用于分析蛋白质中的 NMR 自旋弛豫。SRLS 考虑了蛋白质旋转和探针局部运动之间的动态耦合以及一般张量性质。它是传统无模型(MF)方法的推广,该方法不考虑模式耦合,仅处理简单的张量性质。本文将 SRLS 应用于 Ca(2+)-钙调蛋白与肽 smMLCKp 复合物中 ¹³CDH₂基团的 ²H 弛豫。使用了文献中包括在 14.1 和 17.6 T 以及 288、295、308 和 320 K 下获得的 ²H T₁和 T₂的实验数据。我们发现,对于甲基动力学,模式耦合是一个小的影响。另一方面,一般张量性质很重要。特别是,允许局部空间限制的不对称性很重要,这可以在 SRLS 中通过具有分量 S(0)(2)和 S(2)(2)的菱形局部有序张量来表示。该张量的主轴框架显然与磁张量的轴框架不同。在这里,我们发现-0.2 ≤ S(0)(2) ≤ 0.5 和-0.4 ≤ S(2)(2) ≤ 0. MF 具有单个“广义”序参数 S,限制在 0-0.316 范围内;局部几何形状本质上很简单。参数 S 不准确,已经吸收了未考虑的影响,特别是 S(2)(2) ≠ 0。我们发现甲硫氨酸甲基(其他甲基类型)的取向速率为 8.6×10⁹ 至 21.4×10⁹(0.67×10⁹ 至 6.5×10⁹)1/s。相应的活化能为 10(10-27)kJ/mol。相比之下,MF 产生不准确的有效局部运动相关时间 τ(e),具有非物理的温度依赖性。因此,基于 S 和 τ(e)的有问题的 MF 甲基动力学图已被基于与结构特征相关的局部有序张量和产生准确活化能的局部扩散张量的有见地的物理图所取代。