Innovative Chromatography Group, Irish Separation Science Cluster, Department of Chemistry and the Analytical, Biological and Chemistry Research Facility, University College Cork, Cork, Ireland.
J Chromatogr A. 2011 Apr 15;1218(15):1942-53. doi: 10.1016/j.chroma.2010.11.067. Epub 2010 Dec 4.
Chromatographic and mass transfer kinetic properties of three narrow bore columns (2.1×50 mm) packed with new core-shell 1.7 μm EIROSHELL™-C(18) (EiS-C(18)) particles have been studied. The particles in each column varied in the solid-core to shell particle size ratio (ρ), of 0.59, 0.71 and 0.82, with a porous silica shell thickness of 350, 250 and 150 nm respectively. Scanning and transmission electron microscopy (SEM and TEM), Coulter counter analysis, gas pycnometry, nitrogen sorption analysis and inverse size exclusion chromatography (ISEC) elucidated the physical properties of these materials. The porosity measurement of the packed HILIC and C(18) modified phases provided the means to estimate the phase ratios of the three different shell columns (EiS-150-C(18), EiS-250-C(18) and EiS-350-C(18)). The dependence of the chromatographic performance to the volume fraction of the porous shell was observed for all three columns. The naphtho[2,3-a]pyrene retention factor of k'∼10 on the three EiS-C(18s) employed to obtain the height equivalents to theoretical plates (HETPs) data were achieved by varying the mobile phase compositions and applying the Wilke and Chang relationship to obtain a parallel reduced linear velocity. The Knox fit model gave the coefficient of the reduce HETPs for the three EiS-C(18s). The reduced plate height minimum h(min)=1.9 was achieved for the EiS-150-C(18) column, and generated an efficiency of over 350,000 N/m and h(min)=2.5 equivalent to an efficiency of 200,000 N/m for the EiS-350-C(18) column. The efficiency loss of the EiS-C18 column emanating from the system extra-column volume was discussed with respect to the porous shell thickness.
研究了三种新型核壳型 1.7μm EIROSHELL™-C(18)(EiS-C(18))粒子填充的窄径柱(2.1×50mm)的色谱和传质动力学性质。每根色谱柱中的粒子在固核与壳粒子尺寸比(ρ)方面有所不同,分别为 0.59、0.71 和 0.82,多孔二氧化硅壳厚度分别为 350、250 和 150nm。扫描和透射电子显微镜(SEM 和 TEM)、库尔特计数器分析、气体比重瓶法、氮气吸附分析和反尺寸排阻色谱(ISEC)阐明了这些材料的物理性质。填充的亲水作用色谱和 C(18)改性相的孔隙率测量提供了估算三种不同壳层色谱柱(EiS-150-C(18)、EiS-250-C(18)和 EiS-350-C(18))相比例的方法。观察到所有三种色谱柱的色谱性能对多孔壳体积分数的依赖性。通过改变流动相组成并应用威尔克和张关系获得平行的降低线性速度,在三种 EiS-C(18)上获得了萘并[2,3-a]芘保留因子 k'∼10,以获得理论塔板高度等效物(HETP)数据。诺克斯拟合模型给出了三种 EiS-C(18)的降低 HETP 系数。EiS-150-C(18)柱的降低板高最小值 h(min)=1.9,产生超过 350,000N/m 的效率和 h(min)=2.5,相当于 EiS-350-C(18)柱的 200,000N/m 的效率。从多孔壳厚度方面讨论了源于系统柱外体积的 EiS-C18 柱的效率损失。