Department of Biomedical Engineering, Carnegie Mellon University, PTC 4105-07, 700 Technology Drive, Pittsburgh, PA 15219, USA.
Biomaterials. 2011 Mar;32(8):2043-51. doi: 10.1016/j.biomaterials.2010.11.044. Epub 2010 Dec 15.
Mechanical forces provide critical inputs for proper cellular functions. The interplay between the generation of, and response to, mechanical forces regulate such cellular processes as differentiation, proliferation, and migration. We postulate that adherent cells respond to a number of physical and topographical factors, including cell size and shape, by detecting the magnitude and/or distribution of traction forces under different conditions. To address this possibility we introduce a new simple method for precise micropatterning of hydrogels, and then apply the technique to systematically investigate the relationship between cell geometry, focal adhesions, and traction forces in cells with a series of spread areas and aspect ratios. Contrary to previous findings, we find that traction force is not determined primarily by the cell spreading area but by the distance from cell center to the perimeter. This distance in turn controls traction forces by regulating the size of focal adhesions, such that constraining the size of focal adhesions by micropatterning can override the effect of geometry. We propose that the responses of traction forces to center-periphery distance, possibly through a positive feedback mechanism that regulates focal adhesions, provide the cell with the information on its own shape and size. A similar positive feedback control may allow cells to respond to a variety of physical or topographical signals via a unified mechanism.
机械力为细胞的正常功能提供了重要的输入。机械力的产生和响应之间的相互作用调节了细胞的分化、增殖和迁移等过程。我们假设,贴壁细胞通过检测在不同条件下的牵引力的大小和/或分布,对许多物理和形貌因素(包括细胞大小和形状)做出反应。为了研究这种可能性,我们引入了一种新的简单方法,用于精确地对水凝胶进行微图案化,然后应用该技术系统地研究了一系列不同铺展面积和纵横比的细胞中细胞几何形状、黏附斑和牵引力之间的关系。与之前的发现相反,我们发现牵引力不是主要由细胞铺展面积决定,而是由细胞中心到边缘的距离决定的。这个距离反过来通过控制黏附斑的大小来控制牵引力,使得通过微图案化来限制黏附斑的大小可以克服几何形状的影响。我们提出,牵引力对中心-边缘距离的响应,可能通过调节黏附斑的正反馈机制,为细胞提供关于自身形状和大小的信息。类似的正反馈控制可能允许细胞通过统一的机制对各种物理或形貌信号做出响应。