Suppr超能文献

哺乳动物 GTP 环化水解酶 I 的 N 端肽段是一个自动抑制控制元件,并有助于结合变构调节蛋白 GFRP。

The N-terminal peptide of mammalian GTP cyclohydrolase I is an autoinhibitory control element and contributes to binding the allosteric regulatory protein GFRP.

机构信息

Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA.

出版信息

J Biol Chem. 2011 Apr 8;286(14):11919-28. doi: 10.1074/jbc.M110.196204. Epub 2010 Dec 16.

Abstract

GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme for biosynthesis of tetrahydrobiopterin (BH4), an obligate cofactor for NO synthases and aromatic amino acid hydroxylases. BH4 can limit its own synthesis by triggering decameric GTPCH to assemble in an inhibitory complex with two GTPCH feedback regulatory protein (GFRP) pentamers. Subsequent phenylalanine binding to the GTPCH·GFRP inhibitory complex converts it to a stimulatory complex. An N-terminal inhibitory peptide in GTPCH may also contribute to autoregulation of GTPCH activity, but mechanisms are undefined. To characterize potential regulatory actions of the N-terminal peptide in rat GTPCH, we expressed, purified, and characterized a truncation mutant, devoid of 45 N-terminal amino acids (Δ45-GTPCH) and contrasted its catalytic and GFRP binding properties to wild type GTPCH (wt-GTPCH). Contrary to prior reports, we show that GFRP binds wt-GTPCH in the absence of any small molecule effector, resulting in allosteric stimulation of GTPCH activity: a 20% increase in Vmax, 50% decrease in KmGTP, and increase in Hill coefficient to 1.6, from 1.0. These features of GFRP-stimulated wt-GTPCH activity were phenocopied by Δ45-GTPCH in the absence of bound GFRP. Addition of GFRP to Δ45-GTPCH failed to elicit complex formation or a substantial further increase in GTPCH catalytic activity. Expression of Δ45-GTPCH in HEK-293 cells elicited 3-fold greater BH4 accumulation than an equivalent of wt-GTPCH. Together, results indicate that the N-terminal peptide exerts autoinhibitory control over rat GTPCH and is required for GFRP binding on its own. Displacement of the autoinhibitory peptide provides a molecular mechanism for physiological up-regulation of GTPCH activity.

摘要

GTP 环化水解酶 I (GTPCH) 是四氢生物蝶呤 (BH4) 生物合成的限速酶,BH4 是一氧化氮合酶和芳香族氨基酸羟化酶的必需辅因子。BH4 可以通过触发十聚体 GTPCH 组装成具有两个 GTPCH 反馈调节蛋白 (GFRP) 五聚体的抑制复合物来限制其自身的合成。随后,苯丙氨酸与 GTPCH·GFRP 抑制复合物结合将其转化为刺激复合物。GTPCH 中的 N 端抑制肽也可能有助于 GTPCH 活性的自身调节,但机制尚不清楚。为了研究大鼠 GTPCH 中 N 端肽的潜在调节作用,我们表达、纯化并表征了一种缺失 45 个 N 端氨基酸的截断突变体(Δ45-GTPCH),并将其催化和 GFRP 结合特性与野生型 GTPCH(wt-GTPCH)进行了对比。与之前的报道相反,我们表明 GFRP 在没有任何小分子效应物的情况下与 wt-GTPCH 结合,导致 GTPCH 活性的变构刺激:Vmax 增加 20%,KmGTP 降低 50%,Hill 系数从 1.0 增加到 1.6。这些 GFRP 刺激 wt-GTPCH 活性的特征被 Δ45-GTPCH 在没有结合 GFRP 的情况下模拟。将 GFRP 添加到 Δ45-GTPCH 中未能引起复合物形成或 GTPCH 催化活性的实质性进一步增加。与 wt-GTPCH 相比,在 HEK-293 细胞中表达 Δ45-GTPCH 可引起 3 倍以上的 BH4 积累。综上所述,结果表明 N 端肽对大鼠 GTPCH 具有自动抑制控制作用,并且自身需要与 GFRP 结合。自动抑制肽的置换提供了 GTPCH 活性的生理上调的分子机制。

相似文献

8
Role of human GTP cyclohydrolase I and its regulatory protein in tetrahydrobiopterin metabolism.
Basic Res Cardiol. 2003 Mar;98(2):69-75. doi: 10.1007/s00395-003-0394-y.
10
Purification and cloning of the GTP cyclohydrolase I feedback regulatory protein, GFRP.
J Biol Chem. 1996 Aug 16;271(33):19743-51. doi: 10.1074/jbc.271.33.19743.

引用本文的文献

3
4
Direct evidence for the adaptive role of copy number variation on antifolate susceptibility in Plasmodium falciparum.
Mol Microbiol. 2013 May;88(4):702-12. doi: 10.1111/mmi.12162. Epub 2013 Apr 24.
5
The protein partners of GTP cyclohydrolase I in rat organs.
PLoS One. 2012;7(3):e33991. doi: 10.1371/journal.pone.0033991. Epub 2012 Mar 27.
6
Biochemical characterization of the tetrahydrobiopterin synthesis pathway in the oleaginous fungus Mortierella alpina.
Microbiology (Reading). 2011 Nov;157(Pt 11):3059-3070. doi: 10.1099/mic.0.051847-0. Epub 2011 Aug 18.

本文引用的文献

2
Identification and functional characterization of phosphorylation sites on GTP cyclohydrolase I.
Arterioscler Thromb Vasc Biol. 2009 Dec;29(12):2161-8. doi: 10.1161/ATVBAHA.109.194464. Epub 2009 Sep 17.
3
Nitric oxide and vascular insulin resistance.
Biofactors. 2009 Jan-Feb;35(1):21-7. doi: 10.1002/biof.3.
4
Direct binding of GTP cyclohydrolase and tyrosine hydroxylase: regulatory interactions between key enzymes in dopamine biosynthesis.
J Biol Chem. 2008 Nov 14;283(46):31449-59. doi: 10.1074/jbc.M802552200. Epub 2008 Sep 18.
5
Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact.
Metab Eng. 2008 May-Jul;10(3-4):141-53. doi: 10.1016/j.ymben.2008.02.002. Epub 2008 Feb 20.
6
Phosphoproteome analysis of fission yeast.
J Proteome Res. 2008 Mar;7(3):1088-97. doi: 10.1021/pr7006335. Epub 2008 Feb 8.
7
Large-scale phosphorylation analysis of mouse liver.
Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1488-93. doi: 10.1073/pnas.0609836104. Epub 2007 Jan 22.
8
Tetrahydrobiopterin availability in Parkinson's and Alzheimer's disease; potential pathogenic mechanisms.
Neurochem Res. 2007 Apr-May;32(4-5):751-6. doi: 10.1007/s11064-006-9201-0. Epub 2006 Dec 27.
9
GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence.
Nat Med. 2006 Nov;12(11):1269-77. doi: 10.1038/nm1490. Epub 2006 Oct 22.
10
A typical N-terminal extensions confer novel regulatory properties on GTP cyclohydrolase isoforms in Drosophila melanogaster.
J Biol Chem. 2006 Nov 3;281(44):33302-12. doi: 10.1074/jbc.M602196200. Epub 2006 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验