Suppr超能文献

使用一种应用于尿液药物筛选的算法来评估对氢可酮治疗方案的依从性。

Use of an algorithm applied to urine drug screening to assess adherence to a hydrocodone regimen.

机构信息

Jefferson School of Population Health, Thomas Jefferson University, Philadelphia, PA 10107, USA.

出版信息

J Clin Pharm Ther. 2011 Apr;36(2):200-7. doi: 10.1111/j.1365-2710.2010.01236.x. Epub 2010 Dec 19.

Abstract

WHAT IS KNOWN AND OBJECTIVE

This study examined the ability of an algorithm applied to urine drug levels of hydrocodone in healthy adult volunteers to differentiate among low, medium and high doses of hydrocodone.

METHODS

Twenty healthy volunteers received 20, 60 and 120 mg daily doses of hydrocodone dosed to steady-state at each level while under a naltrexone blockade. Using a florescence polarization immunoassay (FPIA), two urine samples were taken at each dosing level from each participant once steady-state was reached. The concordance was calculated for raw and adjusted FPIA urine hydrocodone values within each study participant across all doses. An analysis of medians was calculated for each of the dosage groupings using Bonett-Price confidence intervals for both raw and adjusted FPIA values. Finally, the Somers' D rank order analysis was performed for both raw and adjusted FPIA methods followed by a linear comparison of parameters to further determine which lab value reporting method produced a better fit with dosage.

RESULTS AND DISCUSSION

The concordance correlation coefficient for the pairs of raw urine FPIA values was 0·339, while the concordance correlation coefficient for the pairs of normalized FPIA values using the algorithm was 0·677. While some overlap of the confidence intervals was observed using the raw FPIA values, the intervals for the adjusted FPIA levels did not overlap between any dose levels, despite the application of a Bonferroni adjustment to correct for multiple comparisons. Results of the Somers' D analyses suggest that the adjusted FPIA method is 15% more likely to be concordant with dose than the raw value method.

WHAT IS NEW AND CONCLUSIONS

In contrast to raw FPIA values, an algorithm that normalizes hydrocodone urine drug levels for PH, specific gravity and lean body mass discriminates well between all three of the daily doses of hydrocodone tested (20, 60 and 120 mg), even when correcting for multiple analyses.

摘要

已知和目的

本研究旨在检验应用于健康成年志愿者尿液中美托吗啡浓度的算法,区分美托吗啡低、中、高剂量的能力。

方法

20 名健康志愿者接受 20、60 和 120mg 每日剂量的美托吗啡,在每个剂量水平下达到稳态时,同时接受纳曲酮阻断。使用荧光偏振免疫分析法(FPIA),在每个参与者达到稳态时,从每个剂量水平采集两个尿液样本。在所有剂量下,对每个研究参与者的原始和调整后的 FPIA 尿液美托吗啡值进行一致性计算。使用原始和调整后的 FPIA 值,使用 Bonett-Price 置信区间计算每个剂量分组的中位数。最后,对原始和调整后的 FPIA 方法进行 Somers'D 秩相关分析,然后对参数进行线性比较,以进一步确定哪种实验室值报告方法与剂量更匹配。

结果与讨论

原始尿液 FPIA 值对的一致性相关系数为 0.339,而使用算法对归一化 FPIA 值对的一致性相关系数为 0.677。虽然原始 FPIA 值的置信区间有一些重叠,但调整后的 FPIA 水平的置信区间在任何剂量水平之间都没有重叠,尽管应用了 Bonferroni 调整来校正多重比较。Somers'D 分析的结果表明,调整后的 FPIA 方法比原始值方法更有可能与剂量一致,其一致性的可能性高 15%。

新发现和结论

与原始 FPIA 值相比,一种用于美托吗啡尿液药物水平的算法,用于 PH、比重和瘦体重进行归一化,可很好地区分三种每日剂量(20、60 和 120mg)的美托吗啡,即使在对多个分析进行校正时也是如此。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验