Miller Gregory M, Ogunnaike Babatunde A, Schwaber James S, Vadigepalli Rajanikanth
Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Philadelphia, PA 19107, USA.
BMC Syst Biol. 2010 Dec 17;4:171. doi: 10.1186/1752-0509-4-171.
The octapeptide Angiotensin II is a key hormone that acts via its receptor AT1R in the brainstem to modulate the blood pressure control circuits and thus plays a central role in the cardiac and respiratory homeostasis. This modulation occurs via activation of a complex network of signaling proteins and transcription factors, leading to changes in levels of key genes and proteins. AT1R initiated activity in the nucleus tractus solitarius (NTS), which regulates blood pressure, has been the subject of extensive molecular analysis. But the adaptive network interactions in the NTS response to AT1R, plausibly related to the development of hypertension, are not understood.
We developed and analyzed a mathematical model of AT1R-activated signaling kinases and a downstream gene regulatory network, with structural basis in our transcriptomic data analysis and literature. To our knowledge, our report presents the first computational model of this key regulatory network. Our simulations and analysis reveal a dynamic balance among distinct dimers of the AP-1 family of transcription factors. We investigated the robustness of this behavior to simultaneous perturbations in the network parameters using a novel multivariate approach that integrates global sensitivity analysis with decision-tree methods. Our analysis implicates a subset of Fos and Jun dependent mechanisms, with dynamic sensitivities shifting from Fos-regulating kinase (FRK)-mediated processes to those downstream of c-Jun N-terminal kinase (JNK). Decision-tree analysis indicated that while there may be a large combinatorial functional space feasible for neuronal states and parameters, the network behavior is constrained to a small set of AP-1 response profiles. Many of the paths through the combinatorial parameter space lead to a dynamic balance of AP-1 dimer forms, yielding a robust AP-1 response counteracting the biological variability.
Based on the simulation and analysis results, we demonstrate that a dynamic balance among distinct dimers of the AP-1 family of transcription factors underlies the robust activation of neuronal gene expression in the NTS response to AT1R activation. Such a differential sensitivity to limited set of mechanisms is likely to underlie the stable homeostatic physiological response.
八肽血管紧张素II是一种关键激素,它通过其在脑干中的受体AT1R发挥作用,调节血压控制回路,从而在心脏和呼吸稳态中发挥核心作用。这种调节通过激活复杂的信号蛋白和转录因子网络来实现,导致关键基因和蛋白质水平的变化。AT1R在调节血压的孤束核(NTS)中引发的活动,一直是广泛分子分析的主题。但NTS对AT1R反应中的适应性网络相互作用(可能与高血压的发展有关)尚不清楚。
我们基于转录组数据分析和文献构建并分析了AT1R激活的信号激酶和下游基因调控网络的数学模型。据我们所知,我们的报告展示了这个关键调控网络的首个计算模型。我们的模拟和分析揭示了转录因子AP-1家族不同二聚体之间的动态平衡。我们使用一种将全局敏感性分析与决策树方法相结合的新型多变量方法,研究了这种行为对网络参数同时扰动的鲁棒性。我们的分析表明,Fos和Jun依赖机制的一个子集起作用,动态敏感性从Fos调节激酶(FRK)介导的过程转移到c-Jun氨基末端激酶(JNK)下游的过程。决策树分析表明,虽然神经元状态和参数可能存在大量可行的组合功能空间,但网络行为被限制在一小部分AP-1反应谱中。通过组合参数空间的许多路径导致AP-1二聚体形式的动态平衡,产生一种强大的AP-1反应以抵消生物学变异性。
基于模拟和分析结果,我们证明转录因子AP-1家族不同二聚体之间的动态平衡是NTS对AT1R激活反应中神经元基因表达强大激活的基础。对有限机制集的这种差异敏感性可能是稳定稳态生理反应的基础。