Suppr超能文献

使用 RuO2/IrO2 涂覆钛阳极电化学氧化反渗透浓缩液中的痕量有机污染物。

Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes.

机构信息

Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.

出版信息

Water Res. 2011 Feb;45(4):1579-86. doi: 10.1016/j.watres.2010.11.035. Epub 2010 Dec 1.

Abstract

During membrane treatment of secondary effluent from wastewater treatment plants, a reverse osmosis concentrate (ROC) containing trace organic contaminants is generated. As the latter are of concern, effective and economic treatment methods are required. Here, we investigated electrochemical oxidation of ROC using Ti/Ru(0.7)Ir(0.3)O(2) electrodes, focussing on the removal of dissolved organic carbon (DOC), specific ultra-violet absorbance at 254 nm (SUVA(254)), and 28 pharmaceuticals and pesticides frequently encountered in secondary treated effluents. The experiments were conducted in a continuously fed reactor at current densities (J) ranging from 1 to 250 A m(-2) anode, and a batch reactor at J = 250 A m(-2). Higher mineralization efficiency was observed during batch oxidation (e.g. 25.1 ± 2.7% DOC removal vs 0% removal in the continuous reactor after applying specific electrical charge, Q = 437.0 A h m(-3) ROC), indicating that DOC removal is depending on indirect oxidation by electrogenerated oxidants that accumulate in the bulk liquid. An initial increase and subsequent slow decrease in SUVA(254) during batch mode suggests the introduction of auxochrome substituents (e.g. -Cl, NH(2)Cl, -Br, and -OH) into the aromatic compounds. Contrarily, in the continuous reactor ring-cleaving oxidation products were generated, and SUVA(254) removal correlated with applied charge. Furthermore, 20 of the target pharmaceuticals and pesticides completely disappeared in both the continuous and batch experiments when applying J ≥ 150 A m(-2) (i.e. Q ≥ 461.5 A h m(-3)) and 437.0 A h m(-3) (J = 250 A m(-2)), respectively. Compounds that were more persistent during continuous oxidation were characterized by the presence of electrophilic groups on the aromatic ring (e.g. triclopyr) or by the absence of stronger nucleophilic substituents (e.g. ibuprofen). These pollutants were oxidized when applying higher specific electrical charge in batch mode (i.e. 1.45 kA h m(-3) ROC). However, baseline toxicity as determined by Vibrio fischeri bioluminescence inhibition tests (Microtox) was increasing with higher applied charge during batch and continuous oxidation, indicating the formation of toxic oxidation products, possibly chlorinated and brominated organic compounds.

摘要

在废水处理厂的二级出水的膜处理过程中,会产生反渗透浓缩物(ROC),其中含有痕量有机污染物。由于这些污染物受到关注,因此需要有效的经济处理方法。在这里,我们使用 Ti/Ru(0.7)Ir(0.3)O(2)电极研究了 ROC 的电化学氧化,重点是去除溶解有机碳(DOC)、特定紫外吸光度在 254nm(SUVA(254))以及 28 种在二级处理废水中经常遇到的药物和农药。实验在连续进料反应器中以 1 至 250A/m(2)阳极的电流密度(J)进行,并且在 J = 250A/m(2)的间歇式反应器中进行。在分批氧化过程中观察到更高的矿化效率(例如,在施加特定电荷 Q = 437.0Ah/m(3)ROC 后,在连续反应器中去除 25.1 ± 2.7%的 DOC,而在间歇式反应器中去除 0%),这表明 DOC 的去除取决于在主体液体中积累的电生成氧化剂的间接氧化。在批处理模式下,SUVA(254)的初始增加和随后的缓慢减少表明引入了助色团取代基(例如-Cl、-NH(2)Cl、-Br 和 -OH)到芳香化合物中。相反,在连续反应器中,生成了开环氧化产物,并且 SUVA(254)的去除与施加的电荷相关。此外,当施加 J ≥ 150A/m(2)(即 Q ≥ 461.5Ah/m(3))和 250A/m(2)(J = 250A/m(2))时,连续和批处理实验中 20 种目标药物和农药完全消失,分别为 437.0Ah/m(3)。在连续氧化过程中更持久的化合物的特征在于芳环上存在亲电基团(例如三氯吡)或不存在更强的亲核取代基(例如布洛芬)。当在批处理模式下施加更高的特定电荷时,这些污染物被氧化(即 ROC 的 1.45kAh/m(3))。然而,当在批处理和连续氧化过程中施加更高的电荷时,根据发光细菌 Vibrio fischeri 的生物发光抑制试验(Microtox)确定的基线毒性增加,表明形成了有毒的氧化产物,可能是氯化和溴化有机化合物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验