Division of Research, Logan University, 1851 Schoettler Rd, Chesterfield, MO 63017, USA.
Med Eng Phys. 2011 May;33(4):438-45. doi: 10.1016/j.medengphy.2010.11.011. Epub 2010 Dec 16.
Disc swelling pressure (P(swell)) facilitated by fixed charged density (FCD) of proteoglycans (P(fcd)) and strain-dependent permeability (P(strain)) are of critical significance in the physiological functioning of discs. FCD of proteoglycans prevents any excessive matrix deformation by tissue stiffening, whereas strain-dependent permeability limits the rate of stress transfer from fluid to solid skeleton. To date, studies involving the modeling of FCD of proteoglycans and strain-dependent permeability have not been reported for the cervical discs. The current study objective is to compare the relative contributions of strain-dependent permeability and FCD of proteoglycans in predicting cervical disc biomechanics. Three-dimensional finite element models of a C5-C6 segment with three different disc compositions were analyzed: an SPFP model (strain-dependent permeability and FCD of proteoglycans), an SP model (strain-dependent permeability alone), and an FP model (FCD of proteoglycans alone). The outcomes of the current study suggest that the relative contributions of strain-dependent permeability and FCD of proteoglycans were almost comparable in predicting the physiological behavior of the cervical discs under moment loads. However, under compression, strain-dependent permeability better predicted the in vivo disc response than that of the FCD of proteoglycans. Unlike the FP model (least stiff) in compression, motion behavior of the three models did not vary much from each other and agreed well within the standard deviations of the corresponding in vivo published data. Flexion was recorded with maximum P(fcd) and P(strain), whereas minimum values were found in extension. The study data enhance the understanding of the roles played by the FCD of proteoglycans and strain-dependent permeability and porosity in determining disc tissue swelling behavior. Degenerative changes involving strain-dependent permeability and/or loss of FCD of proteoglycans can further be studied using an SPFP model. Future experiments are necessary to support the current study results.
椎间盘肿胀压力(P(swell))由蛋白聚糖的固定电荷密度(P(fcd))和应变依赖性渗透率(P(strain))促进,对椎间盘的生理功能具有重要意义。蛋白聚糖的固定电荷密度可通过组织变硬防止任何过度的基质变形,而应变依赖性渗透率则限制了从流体到固体骨架的应力传递速率。迄今为止,尚未有研究报道涉及颈椎间盘蛋白聚糖固定电荷密度和应变依赖性渗透率的建模。本研究的目的是比较应变依赖性渗透率和蛋白聚糖固定电荷密度在预测颈椎间盘生物力学中的相对贡献。分析了具有三种不同椎间盘成分的 C5-C6 节段的三维有限元模型:SPFP 模型(应变依赖性渗透率和蛋白聚糖固定电荷密度)、SP 模型(仅应变依赖性渗透率)和 FP 模型(仅蛋白聚糖固定电荷密度)。本研究结果表明,在预测弯矩载荷下颈椎间盘生理行为时,应变依赖性渗透率和蛋白聚糖固定电荷密度的相对贡献几乎相当。然而,在压缩下,应变依赖性渗透率比蛋白聚糖固定电荷密度更能预测体内椎间盘的反应。与压缩下的 FP 模型(最软)不同,三个模型的运动行为彼此之间没有太大差异,并且与相应的体内发表数据的标准偏差内吻合良好。在屈曲时记录到最大的 P(fcd)和 P(strain),而在伸展时则记录到最小的 P(fcd)和 P(strain)。研究数据增强了对蛋白聚糖固定电荷密度和应变依赖性渗透率和孔隙率在确定椎间盘组织肿胀行为中所起作用的理解。可以使用 SPFP 模型进一步研究涉及应变依赖性渗透率和/或蛋白聚糖固定电荷密度丧失的退行性变化。需要进行未来的实验来支持本研究的结果。