Department of Chemistry, SUNY at Stony Brook, Stony Brook, New York 11794-3400, United States.
J Am Chem Soc. 2011 Jan 26;133(3):503-12. doi: 10.1021/ja108085d. Epub 2010 Dec 20.
Lithium ion batteries (LIBs) containing silicon negative electrodes have been the subject of much recent investigation, because of the extremely large gravimetric and volumetric capacities of silicon. The crystalline-to-amorphous phase transition that occurs on electrochemical Li insertion into crystalline Si, during the first discharge, hinders attempts to link the structure in these systems with electrochemical performance. We apply a combination of local structure probes, ex situ (7)Li nuclear magnetic resonance (NMR) studies, and pair distribution function (PDF) analysis of X-ray data to investigate the changes in short-range order that occur during the initial charge and discharge cycles. The distinct electrochemical profiles observed subsequent to the first discharge have been shown to be associated with the formation of distinct amorphous lithiated silicide structures. For example, the first process seen on the second discharge is associated with the lithiation of the amorphous Si, forming small clusters. These clusters are broken in the second process to form isolated silicon anions. The (de)lithiation model helps explain the hysteresis and the steps in the electrochemical profile observed during the lithiation and delithiation of silicon.
锂离子电池(LIB)含有硅负极,由于硅具有极高的重量和体积容量,因此成为近期研究的热点。在首次放电过程中,电化学 Li 嵌入结晶 Si 时发生的晶态到非晶态的相转变,阻碍了人们将这些体系中的结构与电化学性能联系起来。我们应用了一系列局部结构探针、原位(7)Li 核磁共振(NMR)研究以及 X 射线数据的配分函数(PDF)分析,来研究初始充电和放电循环过程中短程有序的变化。首次放电后观察到的明显电化学曲线与形成独特的非晶态锂化硅化物结构有关。例如,第二次放电过程中的第一个过程与非晶硅的锂化有关,形成小簇。第二个过程中这些簇被打破,形成孤立的硅阴离子。脱锂模型有助于解释在硅的锂化和脱锂过程中观察到的电化学曲线的滞后和阶跃。