Department of Plant Sciences, University of Oxford, Oxford, United Kingdom.
Mol Biol Evol. 2011 Apr;28(4):1491-503. doi: 10.1093/molbev/msq335. Epub 2010 Dec 16.
Rubisco, the primary photosynthetic carboxylase, evolved 3-4 billion years ago in an anaerobic, high CO(2) atmosphere. The combined effect of low CO(2) and high O(2) levels in the modern atmosphere, and the inability of Rubisco to distinguish completely between CO(2) and O(2), leads to the occurrence of an oxygenation reaction that reduces the efficiency of photosynthesis. Among land plants, C(4) photosynthesis largely solves this problem by facilitating a high CO(2)/O(2) ratio at the site of Rubisco that resembles the atmosphere in which the ancestral enzyme evolved. The prediction that such conditions favor Rubiscos with higher kcat(CO2) and lower CO(2)/O(2) specificity (S(C/O)) is well supported, but the structural basis for the differences between C(3) and C(4) Rubiscos is not clear. Flaveria (Asteraceae) includes C(3), C(3)-C(4) intermediate, and C(4) species with kinetically distinct Rubiscos, providing a powerful system in which to study the biochemical transition of Rubisco during the evolution from C(3) to C(4) photosynthesis. We analyzed the molecular evolution of chloroplast rbcL and nuclear rbcS genes encoding the large subunit (LSu) and small subunit (SSu) of Rubisco from 15 Flaveria species. We demonstrate positive selection on both subunits, although selection is much stronger on the LSu. In Flaveria, two positively selected LSu amino acid substitutions, M309I and D149A, distinguish C(4) Rubiscos from the ancestral C(3) species and statistically account for much of the kinetic difference between the two groups. However, although Flaveria lacks a characteristic "C(4)" SSu, our data suggest that specific residue substitutions in the SSu are correlated with the kinetic properties of Rubisco in this genus.
核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco),作为主要的光合羧化酶,于 30-40 亿年前在无氧、高 CO₂的大气中进化而来。现代大气中低 CO₂和高 O₂水平的综合影响,以及 Rubisco 无法完全区分 CO₂和 O₂,导致发生了一种氧合反应,降低了光合作用的效率。在陆生植物中,C₄光合作用通过促进 Rubisco 位点处类似于其祖先酶进化时的大气中高 CO₂/O₂比值,在很大程度上解决了这个问题。Rubisco 具有更高的 kcat(CO₂)和更低的 CO₂/O₂特异性(S(C/O))的预测得到了很好的支持,但 C₃和 C₄ Rubisco 之间的结构差异的基础尚不清楚。半日花科( Asteraceae)包含 C₃、C₃-C₄ 中间型和 C₄ 种,其 Rubisco 具有不同的动力学特征,为研究 Rubisco 在从 C₃到 C₄光合作用的进化过程中的生化转变提供了一个强大的系统。我们分析了来自 15 种半日花属植物的叶绿体 rbcL 和核 rbcS 基因编码的 Rubisco 大亚基(LSu)和小亚基(SSu)的分子进化。我们证明了两个亚基都受到了正选择,尽管 LSu 受到的选择更强。在半日花属中,两个正选择的 LSu 氨基酸取代 M309I 和 D149A,将 C₄ Rubisco 与祖先的 C₃物种区分开来,并在统计学上解释了这两组之间的大部分动力学差异。然而,尽管半日花属缺乏特征性的“C₄”SSu,但我们的数据表明,SSu 中的特定残基取代与该属中 Rubisco 的动力学特性相关。