Suppr超能文献

植物中(18)O₂和(16)O₂单向通量的建模。III:用简单模型拟合实验数据。

Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.

作者信息

André Marcel J

机构信息

154 montée d'Imbert, 04100 Manosque, France.

出版信息

Biosystems. 2013 Aug;113(2):104-14. doi: 10.1016/j.biosystems.2012.10.004. Epub 2012 Nov 13.

Abstract

Photosynthetic assimilation of CO2 in plants results in the balance between the photochemical energy developed by light in chloroplasts, and the consumption of that energy by the oxygenation processes, mainly the photorespiration in C3 plants. The analysis of classical biological models shows the difficulties to bring to fore the oxygenation rate due to the photorespiration pathway. As for other parameters, the most important key point is the estimation of the electron transport rate (ETR or J), i.e. the flux of biochemical energy, which is shared between the reductive and oxidative cycles of carbon. The only reliable method to quantify the linear electron flux responsible for the production of reductive energy is to directly measure the O2 evolution by (18)O2 labelling and mass spectrometry. The hypothesis that the respective rates of reductive and oxidative cycles of carbon are only determined by the kinetic parameters of Rubisco, the respective concentrations of CO2 and O2 at the Rubisco site and the available electron transport rate, ultimately leads to propose new expressions of biochemical model equations. The modelling of (18)O2 and (16)O2 unidirectional fluxes in plants shows that a simple model can fit the photosynthetic and photorespiration exchanges for a wide range of environmental conditions. Its originality is to express the carboxylation and the oxygenation as a function of external gas concentrations, by the definition of a plant specificity factor Sp that mimics the internal reactions of Rubisco in plants. The difference between the specificity factors of plant (Sp) and of Rubisco (Sr) is directly related to the conductance values to CO2 transfer between the atmosphere and the Rubisco site. This clearly illustrates that the values and the variation of conductance are much more important, in higher C3 plants, than the small variations of the Rubisco specificity factor. The simple model systematically expresses the reciprocal variations of carboxylation and oxygenation exchanges illustrated by a "mirror effect". It explains the protective sink effect of photorespiration, e.g. during water stress. The importance of the CO2 compensation point, in classical models, is reduced at the benefit of the crossing points Cx and Ox, concentration values where carboxylation and oxygenation are equal or where the gross O2 uptake is half of the gross O2 evolution. This concept is useful to illustrate the feedback effects of photorespiration in the atmosphere regulation. The constancy of Sp and of Cx for a great variation of P under several irradiance levels shows that the regulation of the conductance maintains constant the internal CO2 and the ratio of photorespiration to photosynthesis (PR/P). The maintenance of the ratio PR/P, in conditions of which PR could be reduced and the carboxylation increased, reinforces the hypothesis of a positive role of photorespiration and its involvement in the plant-atmosphere co-evolution.

摘要

植物中二氧化碳的光合同化作用导致叶绿体中光产生的光化学能量与氧化过程(主要是C3植物中的光呼吸)对该能量的消耗之间达到平衡。对经典生物学模型的分析表明,由于光呼吸途径,难以突出氧合速率。至于其他参数,最重要的关键点是电子传递速率(ETR或J)的估计,即生化能量通量,它在碳的还原和氧化循环之间分配。量化负责还原能量产生的线性电子通量的唯一可靠方法是通过(18)O2标记和质谱法直接测量O2释放量。碳的还原和氧化循环各自的速率仅由Rubisco的动力学参数、Rubisco位点处CO2和O2的各自浓度以及可用电子传递速率决定的假设,最终导致提出生化模型方程的新表达式。对植物中(18)O2和(16)O2单向通量的建模表明,一个简单的模型可以在广泛的环境条件下拟合光合作用和光呼吸交换。其独特之处在于,通过定义一个模拟植物中Rubisco内部反应的植物特异性因子Sp,将羧化作用和氧合作用表示为外部气体浓度的函数。植物的特异性因子(Sp)和Rubisco的特异性因子(Sr)之间的差异直接与大气和Rubisco位点之间CO2转移的传导值相关。这清楚地表明,在高等C3植物中,传导值及其变化比Rubisco特异性因子的微小变化更为重要。这个简单的模型系统地表达了由“镜像效应”所说明的羧化作用和氧合作用交换的相互变化。它解释了光呼吸的保护汇效应,例如在水分胁迫期间。在经典模型中,CO2补偿点的重要性降低了,转而有利于交叉点Cx和Ox,即羧化作用和氧合作用相等或总O2吸收量是总O2释放量一半时的浓度值。这个概念有助于说明光呼吸在大气调节中的反馈效应。在几个光照水平下,随着P的大幅变化,Sp和Cx保持恒定,这表明传导的调节使内部CO2以及光呼吸与光合作用的比率(PR/P)保持恒定。在PR可以降低而羧化作用可以增加的条件下,PR/P比率的维持强化了光呼吸具有积极作用及其参与植物 - 大气共同进化的假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验