Gallo Orazio, Manduchi Roberto
IEEE Trans Pattern Anal Mach Intell. 2011 Sep;33(9):1834-43. doi: 10.1109/TPAMI.2010.229. Epub 2010 Dec 23.
Camera cellphones have become ubiquitous, thus opening a plethora of opportunities for mobile vision applications. For instance, they can enable users to access reviews or price comparisons for a product from a picture of its barcode while still in the store. Barcode reading needs to be robust to challenging conditions such as blur, noise, low resolution, or low-quality camera lenses, all of which are extremely common. Surprisingly, even state-of-the-art barcode reading algorithms fail when some of these factors come into play. One reason resides in the early commitment strategy that virtually all existing algorithms adopt: The image is first binarized and then only the binary data are processed. We propose a new approach to barcode decoding that bypasses binarization. Our technique relies on deformable templates and exploits all of the gray-level information of each pixel. Due to our parameterization of these templates, we can efficiently perform maximum likelihood estimation independently on each digit and enforce spatial coherence in a subsequent step. We show by way of experiments on challenging UPC-A barcode images from five different databases that our approach outperforms competing algorithms. Implemented on a Nokia N95 phone, our algorithm can localize and decode a barcode on a VGA image (640 × 480, JPEG compressed) in an average time of 400-500 ms.
拍照手机已经无处不在,从而为移动视觉应用带来了大量机会。例如,用户在商店里时,仅凭产品条形码的图片就能获取该产品的评价或价格比较信息。条形码读取需要在诸如模糊、噪声、低分辨率或低质量摄像头镜头等具有挑战性的条件下保持稳健性,而所有这些情况都极为常见。令人惊讶的是,即使是最先进的条形码读取算法,在这些因素中的某些因素起作用时也会失效。一个原因在于几乎所有现有算法都采用的早期承诺策略:首先对图像进行二值化处理,然后仅处理二进制数据。我们提出了一种绕过二值化的条形码解码新方法。我们的技术依赖于可变形模板,并利用每个像素的所有灰度级信息。由于我们对这些模板进行了参数化,我们可以在每个数字上独立高效地执行最大似然估计,并在后续步骤中强制实现空间一致性。通过对来自五个不同数据库的具有挑战性的UPC - A条形码图像进行实验,我们表明我们的方法优于竞争算法。在诺基亚N95手机上实现后,我们的算法能够在平均400 - 500毫秒的时间内定位并解码VGA图像(640×480,JPEG压缩)上的条形码。