Rius Jordi
Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, 08193 Bellaterra, Catalonia 08193, Spain.
Acta Crystallogr A. 2011 Jan;67(Pt 1):63-7. doi: 10.1107/S0108767310047823. Epub 2010 Dec 7.
A new type of direct methods (DM) called Patterson-function DM are presented that directly explore the Patterson instead of the modulus function. Since they work with the experimental intensities, they are particularly well suited for handling powder diffraction data. These methods are based on the maximization of the sum function S(P) ∝ ∑H(I(H)-)G(-H)(Φ) in terms of the Φ phases of the structure factors. The quantity accessible from the experiment is I(H), the equidistributed multiplet intensity of reflection H, and is the average intensity taken over all non-systematically absent reflections. G(-H)(Φ) is the calculated structure-factor amplitude of the squared structure that includes the positivity and the atomicity of the density function in its definition. The S(P) sum function can be optimized with the Patterson-function tangent formula (TF) using a variant of the S-FFT algorithm [Rius et al. (2007), Acta Cryst. A63, 131-134]. It is important that overlapped reflections also participate in the phase refinement, so that not only the resolved reflections but the whole pattern contribute decisively to the refinement. The increase in effective data resolution minimizes Fourier series termination effects and improves the accuracy of G(Φ). The Patterson-function TF has been applied to synchrotron powder data of various organic compounds. In all cases the molecules were easily identified in the respective Fourier maps. By way of illustration the method is applied to synchrotron powder data of a dimer formed by 30 symmetry-independent non-H atoms. Since single-crystal data may be regarded as overlap-free powder data, it is clear that Patterson-function DM can cope with powder and single-crystal data.
提出了一种新型的直接法(DM),即帕特森函数直接法,该方法直接探索帕特森函数而非模量函数。由于它们处理的是实验强度,因此特别适合处理粉末衍射数据。这些方法基于结构因子的相位Φ,使和函数S(P) ∝ ∑H(I(H)-)G(-H)(Φ)最大化。实验可获取的量是I(H),即反射H的等分布多重峰强度,是对所有非系统消光反射的平均强度。G(-H)(Φ)是计算得到的平方结构的结构因子振幅,其定义中包含密度函数的正性和原子性。可以使用S-FFT算法的一个变体,通过帕特森函数切线公式(TF)来优化S(P)和函数[里乌斯等人(2007年),《晶体学报》A63卷,第131 - 134页]。重叠反射也参与相位精修很重要,这样不仅解析出的反射,而且整个衍射图谱都对精修有决定性贡献。有效数据分辨率的提高使傅里叶级数终止效应最小化,并提高了G(Φ)的准确性。帕特森函数TF已应用于各种有机化合物的同步辐射粉末数据。在所有情况下,分子都能在各自的傅里叶图中轻松识别。作为示例,该方法应用于由30个独立于对称性的非氢原子形成的二聚体的同步辐射粉末数据。由于单晶数据可被视为无重叠的粉末数据,显然帕特森函数直接法可以处理粉末数据和单晶数据。