Department of Chemical and Materials Engineering, University of Alberta Edmonton, Alberta, Canada T6G 2G6.
Chem Soc Rev. 2011 Mar;40(3):1697-721. doi: 10.1039/c0cs00127a. Epub 2010 Dec 21.
Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).
电化学超级电容器(ECs)具有高功率和合理高能量密度的特点,已成为各种新兴能源应用的通用解决方案。本评论主要介绍了锰氧化物基材料在这些应用中的一些材料科学方面,包括这些电极材料的战略设计和制造。纳米结构化、化学修饰和与高表面积、导电纳米结构的结合是开发用于 EC 应用的高性能锰氧化物基电极的三大策略。本文综述的大量工作表明,在锰氧化物基电极材料中,电化学性能得到了提高。然而,仍有许多基本问题尚未得到解答,特别是对于锰氧化物基电极内电子转移和原子传输的电化学界面过程的特性和理解。为了充分利用锰氧化物基电极材料的潜力,明确了解这些基本问题并优化合成参数和材料特性对于 EC 器件的进一步发展至关重要(233 篇参考文献)。