Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Muehlenberg 1, D-14476 Potsdam, Germany.
Langmuir. 2011 Feb 1;27(3):1192-9. doi: 10.1021/la1039464. Epub 2010 Dec 21.
The interfacial properties of Fe(3)O(4)@MEO(2)MA(90)-co-OEGMA(10) NPs, recently developed and described as promising nanotools for biomedical applications, have been investigated at the air/water interface. These Fe(3)O(4) NPs, capped with catechol-terminated random copolymer brushes of 2-(2-methoxyethoxy) ethyl methacrylate (MEO(2)MA) and oligo(ethylene glycol) methacrylate (OEGMA), with molar fractions of 90% and 10%, respectively, proved to be surface active. Surface tension measurements of aqueous dispersions of the NPs showed that the adsorption of the NPs at the air/water interface is time- and concentration-dependent. These NPs do not behave as classical amphiphiles. Once adsorbed at the air/water interface, they do not exchange with NPs in bulk, but they are trapped at the interface. This means that all NPs from the bulk adsorb to the interface until reaching maximum coverage of the interface, which corresponds to values between 6 × 10(-4) and 8 × 10(-4) mg/cm(2) and a critical equilibrium surface tension of ∼47 mN/m. Moreover, Langmuir layers of Fe(3)O(4)@MEO(2)MA(90)-co-OEGMA(10) NPs have been investigated by measuring surface pressure-area compression-expansion isotherms and in situ X-ray fluorescence spectra. The compression-expansion isotherms showed a plateau region above a critical surface pressure of ∼25 mN/m and a pronounced hysteresis. By using a special one-barrier Langmuir trough equipped with two surface pressure microbalances, we have shown that the NPs are squeezed out from the interface into the aqueous subphase, and they readsorb on the other side of the barrier. The results have been supported by TEM as well as AFM experiments of transferred Langmuir-Schaefer films on solid supports. This study shows the ability of Fe(3)O(4)@MEO(2)MA(90)-co-OEGMA(10) NPs to transfer from hydrophilic media (an aqueous solution) to the hydrophobic/hydrophilic interface (air/water interface) and back to the hydrophilic media. This behavior is very promising, opening studies of their ability to cross biological membranes.
最近开发的 Fe(3)O(4)@MEO(2)MA(90)-co-OEGMA(10) NPs 被描述为用于生物医学应用的有前途的纳米工具,其在空气/水界面的界面性质已被研究。这些 Fe(3)O(4) NPs 用 2-(2-甲氧基乙氧基)乙基甲基丙烯酸酯 (MEO(2)MA) 和聚(乙二醇)甲基丙烯酸酯 (OEGMA) 的末端为儿茶酚的无规共聚物刷封端,摩尔分数分别为 90%和 10%,被证明具有表面活性。NPs 水分散体的表面张力测量表明,NPs 在空气/水界面的吸附是时间和浓度依赖的。这些 NPs 不作为经典的两亲物。一旦在空气/水界面被吸附,它们就不会与体相中的 NPs 交换,而是被捕获在界面上。这意味着来自体相的所有 NPs 都吸附到界面上,直到达到界面的最大覆盖度,对应于 6×10(-4) 到 8×10(-4)mg/cm(2)之间的值和约 47 mN/m 的临界平衡表面张力。此外,通过测量表面压-面积压缩-膨胀等温线和原位 X 射线荧光光谱,研究了 Fe(3)O(4)@MEO(2)MA(90)-co-OEGMA(10) NPs 的 Langmuir 层。压缩-膨胀等温线在约 25 mN/m 的临界表面压以上显示出一个平台区域和明显的滞后。通过使用配备有两个表面压微天平的特殊单势垒 Langmuir 槽,我们已经表明, NPs 从界面被挤出到水相中,然后在势垒的另一侧重新吸附。TEM 以及在固体载体上转移的 Langmuir-Schäfer 薄膜的 AFM 实验支持了这一结果。这项研究表明,Fe(3)O(4)@MEO(2)MA(90)-co-OEGMA(10) NPs 能够从亲水介质(水溶液)转移到疏水性/亲水性界面(空气/水界面),然后再回到亲水介质。这种行为非常有前途,为研究它们穿过生物膜的能力开辟了道路。