Suppr超能文献

细胞壁的纳米结构保护纤维素免受酶的攻击。

Nanoscale structure of the cell wall protecting cellulose from enzyme attack.

机构信息

Gruppo RICICLA, Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.

出版信息

Environ Sci Technol. 2011 Feb 1;45(3):1107-13. doi: 10.1021/es1020263. Epub 2010 Dec 21.

Abstract

The cell wall structure protects cellulose from enzymatic attack and its successive fermentation. The nature of this protection consists in the very complex macroscopic and microscopic structure of cell wall that limits transport. Explaining this kind of protection is critical in future research to improve cell polymer availability for enzymatic attack. This research shows that the complete description of the cell wall topography at a nanoscale level allows a mechanistic understanding of cellulose protection. For this purpose, we used gas adsorption methods (CO(2) at 273 K and N(2) at 77 K) to detect mesoporosity (pore size of 1.5-30 nm diameter; MeS) and microporosity (pore size of 0.3-1.5 nm diameter; MiS) of the cell wall of five energy crops, i.e., giant cane, rivet wheat straw, miscanthus, proso millet, and sorghum. The presence of both hemicelluloses in the spaces between cellulose fibrils and the unhydrolyzable and highly cross-linked lignocarbohydrate complex (LCC) determines a microporous (80% pores having diameters below 0.8 nm) structure of the cell wall that prevents the cellulase enzymes from coming into direct contact with the cellulose, as their sizes exceed the cell wall pore size. On the other hand, the removal of the hemicelluloses and of the LCC complex determines a reduction of the MiS and an increase of the available surface for enzymatic attack, i.e., pores >5 nm diameter. This was confirmed by the good negative (r = -0.87, P < 0.001, n = 11) and positive (r = 0.78, P < 0.005, n = 11) correlations found for microporosity and mesoporosity (pores of diameters >5 nm), respectively, vs the glucose production, by cellulase enzyme attack in specific enzymatic hydrolysis tests performed on biomass samples.

摘要

细胞壁结构保护纤维素免受酶的攻击及其连续发酵。这种保护的性质在于细胞壁非常复杂的宏观和微观结构限制了运输。在未来的研究中,解释这种保护机制对于提高纤维素对酶攻击的可及性至关重要。本研究表明,在纳米尺度上完整描述细胞壁形貌,可以深入了解纤维素的保护机制。为此,我们使用气体吸附法(273 K 时的 CO(2)和 77 K 时的 N(2))检测了 5 种能源作物(巨桉、铆钉小麦秸秆、芒草、黍和高粱)细胞壁的中孔(直径为 1.5-30nm 的孔;MeS)和微孔(直径为 0.3-1.5nm 的孔;MiS)。半纤维素存在于纤维素纤维之间的空间中,以及不可水解的、高度交联的木质碳水化合物复合物(LCC),这决定了细胞壁的微孔结构(80%的孔直径小于 0.8nm),阻止了纤维素酶与纤维素直接接触,因为它们的尺寸超过了细胞壁的孔径。另一方面,半纤维素和 LCC 复合物的去除决定了 MiS 的减少和可用于酶攻击的表面积的增加,即直径>5nm 的孔。这通过在特定的酶解试验中,用纤维素酶攻击生物质样品,测量葡萄糖产量,分别对微孔度和中孔度(直径>5nm 的孔)与酶解测试中葡萄糖产量之间的良好负相关(r = -0.87,P < 0.001,n = 11)和正相关(r = 0.78,P < 0.005,n = 11)得到证实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验