Suppr超能文献

通过同步糖化发酵工艺生产燃料乙醇的纤维素酶解研究。

Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process.

机构信息

Alternative Fuels Division, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401, USA.

出版信息

Biotechnol Bioeng. 1993 Apr 15;41(9):846-53. doi: 10.1002/bit.260410903.

Abstract

The biochemical conversion of cellulosic biomass to ethanol, a promising alternative fuel, can be carried out efficiently and economically using the simultaneous saccharification and fermentation (SSF) process. The SSF integrates the enzymatic hydrolysis of cellulose to glucose, catalyzed by the synergistic action of cellulase and beta-glucosidase, with the fermentative synthesis of ethanol. Because the enzymatic step determines the ethanol. Because the enzymatic step determines the availability of glucose to the ethanologenic fermentation, the kinetic of cellulose hydrolysis by cellulase and beta-glucosidase and the susceptibility of the two enzymes to inhibition by hydrolysis and fermentation products are of significant importance to the SSF performance and were investigated under realistic SSF conditions. A previously developed SSF mathematical model was used to conceptualize the depolymerization of cellulose. The model was regressed to the collected data to determine the values of the enzyme parameters and was found to satisfactorily predict the kinetics of cellulose hydrolysis. Cellobiose and glucose were identified as the strongest inhibitors of cellulase and beta-glucosidase, respectively. Experimental and modeling results are presented in light of the impact of enzymatic hydrolysis on fuel ethanol production.

摘要

利用同步糖化发酵(SSF)工艺,可高效且经济地将纤维素生物质转化为有前途的替代燃料乙醇。SSF 工艺将纤维素的酶解过程(由纤维素酶和β-葡萄糖苷酶的协同作用催化)与乙醇的发酵合成过程集成在一起。因为酶解步骤决定了葡萄糖对乙醇发酵的可用性,所以纤维素酶和β-葡萄糖苷酶的水解动力学以及这两种酶对水解和发酵产物抑制的敏感性对 SSF 性能具有重要意义,并在实际 SSF 条件下进行了研究。先前开发的 SSF 数学模型用于概念化纤维素的解聚。通过回归收集到的数据来确定酶参数的值,发现该模型可以很好地预测纤维素水解动力学。纤维二糖和葡萄糖分别被鉴定为纤维素酶和β-葡萄糖苷酶的最强抑制剂。根据酶解对燃料乙醇生产的影响,给出了实验和建模结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验