Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA.
Radiat Res. 2011 Jan;175(1):97-112. doi: 10.1667/RR2332.1.
Radiation-induced DNA double-strand breaks (DSBs) are critical cytotoxic lesions that are typically repaired by nonhomologous end joining (NHEJ) in human cells. Our previous work indicated that the highly cytotoxic DSBs formed by (125)I decay possess base damage clustered within 8 to 10 bases of the break and 3'-phosphate (P) and 3'-OH ends. This study examined the effect of such structures on NHEJ in in vitro assays employing either (125)I decay-induced DSB linearized plasmid DNA or structurally defined duplex oligonucleotides. Duplex oligonucleotides that possess either a 3'-P or 3'-phosphoglycolate (PG) or a ligatable 3'-OH end with either an AP site or an 8-oxo-dG 1 nucleotide upstream (-1n) from the 3'-terminus have been examined for reparability. Moderate to severe end-joining inhibition was observed for modified DSB ends or 8-oxo-dG upstream from a 3'-OH end. In contrast, abolition of end joining was observed with duplexes possessing an AP site upstream from a ligatable 3'-OH end or for a lesion combination involving 3'-P plus an upstream 8-oxo-dG. In addition, base mismatches at the -1n position were also strong inhibitors of NHEJ in this system, suggesting that destabilization of the DSB terminus as a result of base loss or improper base pairing may play a role in the inhibitory effects of these structures. Furthermore, we provide data indicating that DSB end joining is likely to occur prior to removal or repair of base lesions proximal to the DSB terminus. Our results show that base damage or base loss near a DSB end may be a severe block to NHEJ and that complex combinations of lesions presented in the context of a DSB may be more inhibitory than the individual lesions alone. In contrast, blocked DSB 3'-ends alone are only modestly inhibitory to NHEJ. Finally, DNA ligase activity is implicated as being responsible for these effects.
辐射诱导的 DNA 双链断裂 (DSB) 是人类细胞中通过非同源末端连接 (NHEJ) 修复的关键细胞毒性损伤。我们之前的工作表明,(125)I 衰变形成的高细胞毒性 DSB 具有碱基损伤,这些损伤聚集在断裂处的 8 到 10 个碱基内,以及 3'-磷酸 (P) 和 3'-羟基 (OH) 末端。本研究通过体外实验研究了这些结构对 NHEJ 的影响,实验中使用的是 (125)I 衰变诱导的 DSB 线性化质粒 DNA 或结构明确的双链寡核苷酸。研究检查了具有 3'-P 或 3'-磷酸甘油酸 (PG)、或具有 3'-OH 末端的可连接末端、以及 3'-末端上游有 AP 位点或 8-氧代-dG1 核苷酸 (-1n) 的双链寡核苷酸的修复能力。对于修饰的 DSB 末端或 3'-OH 末端上游的 8-氧代-dG,观察到中度至严重的末端连接抑制。相比之下,对于具有可连接 3'-OH 末端上游的 AP 位点的双链体或涉及 3'-P 加上游 8-氧代-dG 的损伤组合,观察到末端连接的消除。此外,在该系统中,-1n 位置的碱基错配也是 NHEJ 的强烈抑制剂,这表明由于碱基丢失或碱基配对不当导致 DSB 末端的不稳定性可能在这些结构的抑制作用中发挥作用。此外,我们提供的数据表明,DSB 末端连接可能发生在 DSB 末端附近的碱基损伤的去除或修复之前。我们的结果表明,DSB 末端附近的碱基损伤或碱基丢失可能是 NHEJ 的严重阻碍,并且 DSB 中呈现的复杂损伤组合可能比单个损伤更具抑制作用。相比之下,单独的受阻 DSB 3'-末端对 NHEJ 的抑制作用仅适中。最后,DNA 连接酶活性被认为是造成这些影响的原因。