Division of Biostatistics, School of Public Health, The Univerity of Minnesota, Minneapolis 55455, USA.
Stat Methods Med Res. 2012 Dec;21(6):621-33. doi: 10.1177/0962280210393712. Epub 2010 Dec 21.
Multivariate meta-analysis is increasingly utilised in biomedical research to combine data of multiple comparative clinical studies for evaluating drug efficacy and safety profile. When the probability of the event of interest is rare, or when the individual study sample sizes are small, a substantial proportion of studies may not have any event of interest. Conventional meta-analysis methods either exclude such studies or include them through ad hoc continuality correction by adding an arbitrary positive value to each cell of the corresponding 2 × 2 tables, which may result in less accurate conclusions. Furthermore, different continuity corrections may result in inconsistent conclusions. In this article, we discuss a bivariate Beta-binomial model derived from Sarmanov family of bivariate distributions and a bivariate generalised linear mixed effects model for binary clustered data to make valid inferences. These bivariate random effects models use all available data without ad hoc continuity corrections, and accounts for the potential correlation between treatment (or exposure) and control groups within studies naturally. We then utilise the bivariate random effects models to reanalyse two recent meta-analysis data sets.
多变量荟萃分析越来越多地应用于生物医学研究中,以合并多个比较性临床研究的数据,用于评估药物疗效和安全性概况。当感兴趣事件的概率较低时,或者当个别研究样本量较小时,大量研究可能没有任何感兴趣的事件。传统的荟萃分析方法要么排除这些研究,要么通过添加任意正值到相应的 2×2 表格的每个单元格来进行特定的连续性校正,这可能会导致不太准确的结论。此外,不同的连续性校正可能会导致不一致的结论。在本文中,我们讨论了一个源自双变量 Beta-binomial 分布的双变量 Beta-binomial 模型和一个用于二元聚类数据的双变量广义线性混合效应模型,以进行有效的推断。这些双变量随机效应模型使用所有可用的数据,而无需特定的连续性校正,并自然地考虑了研究中治疗(或暴露)和对照组之间的潜在相关性。然后,我们利用双变量随机效应模型重新分析了两个最近的荟萃分析数据集。