Suppr超能文献

双向随机效应模型在二分类结局比较研究的荟萃分析中的应用:绝对风险差和相对风险的方法。

Bivariate random effects models for meta-analysis of comparative studies with binary outcomes: methods for the absolute risk difference and relative risk.

机构信息

Division of Biostatistics, School of Public Health, The Univerity of Minnesota, Minneapolis 55455, USA.

出版信息

Stat Methods Med Res. 2012 Dec;21(6):621-33. doi: 10.1177/0962280210393712. Epub 2010 Dec 21.

Abstract

Multivariate meta-analysis is increasingly utilised in biomedical research to combine data of multiple comparative clinical studies for evaluating drug efficacy and safety profile. When the probability of the event of interest is rare, or when the individual study sample sizes are small, a substantial proportion of studies may not have any event of interest. Conventional meta-analysis methods either exclude such studies or include them through ad hoc continuality correction by adding an arbitrary positive value to each cell of the corresponding 2 × 2 tables, which may result in less accurate conclusions. Furthermore, different continuity corrections may result in inconsistent conclusions. In this article, we discuss a bivariate Beta-binomial model derived from Sarmanov family of bivariate distributions and a bivariate generalised linear mixed effects model for binary clustered data to make valid inferences. These bivariate random effects models use all available data without ad hoc continuity corrections, and accounts for the potential correlation between treatment (or exposure) and control groups within studies naturally. We then utilise the bivariate random effects models to reanalyse two recent meta-analysis data sets.

摘要

多变量荟萃分析越来越多地应用于生物医学研究中,以合并多个比较性临床研究的数据,用于评估药物疗效和安全性概况。当感兴趣事件的概率较低时,或者当个别研究样本量较小时,大量研究可能没有任何感兴趣的事件。传统的荟萃分析方法要么排除这些研究,要么通过添加任意正值到相应的 2×2 表格的每个单元格来进行特定的连续性校正,这可能会导致不太准确的结论。此外,不同的连续性校正可能会导致不一致的结论。在本文中,我们讨论了一个源自双变量 Beta-binomial 分布的双变量 Beta-binomial 模型和一个用于二元聚类数据的双变量广义线性混合效应模型,以进行有效的推断。这些双变量随机效应模型使用所有可用的数据,而无需特定的连续性校正,并自然地考虑了研究中治疗(或暴露)和对照组之间的潜在相关性。然后,我们利用双变量随机效应模型重新分析了两个最近的荟萃分析数据集。

相似文献

6
Meta-analysis for rare events.罕见事件的荟萃分析。
Stat Med. 2010 Sep 10;29(20):2078-89. doi: 10.1002/sim.3964.
9
Meta-analysis methods for risk difference: A comparison of different models.风险差的荟萃分析方法:不同模型的比较。
Stat Methods Med Res. 2023 Jan;32(1):3-21. doi: 10.1177/09622802221125913. Epub 2022 Nov 2.
10
Objective Bayesian meta-analysis for sparse discrete data.稀疏离散数据的客观贝叶斯荟萃分析。
Stat Med. 2014 Sep 20;33(21):3676-92. doi: 10.1002/sim.6163. Epub 2014 Apr 8.

引用本文的文献

7
Methods for assessing inverse publication bias of adverse events.评估不良反应逆发表偏倚的方法。
Contemp Clin Trials. 2024 Oct;145:107646. doi: 10.1016/j.cct.2024.107646. Epub 2024 Jul 30.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验