Suppr超能文献

比例元分析中广义线性混合模型的连接函数选择

Choice of Link Functions for Generalized Linear Mixed Models in Meta-Analyses of Proportions.

作者信息

Siegel Lianne K, Silva Milena, Lin Lifeng, Chen Yong, Liu Yu-Lun, Chu Haitao

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, MN, 55455, USA.

Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ 85724, USA.

出版信息

Res Methods Med Health Sci. 2025 Jan;6(1):13-23. doi: 10.1177/26320843231224808. Epub 2023 Dec 27.

Abstract

Two-step approaches for synthesizing proportions in a meta-analysis require first transforming the proportions to a scale where their distribution across studies can be approximated by a normal distribution. Commonly used transformations include the log, logit, arcsine, and Freeman-Tukey double-arcsine transformations. Alternatively, a generalized linear mixed model (GLMM) can be fit directly on the data using the exact binomial likelihood. Unlike popular two-step methods, this accounts for uncertainty in the within-study variances without a normal approximation and does not require an correction for zero counts. However, GLMMs require choosing a link function; we illustrate how the AIC can be used to choose the best-fitting link when different link functions give different results. We also highlight how misspecification of the link function can introduce bias; using an empirical sandwich estimator for the standard error may not sufficiently avoid undercoverage due to link function misspecification. We demonstrate the application of GLMMs and choice of link function using data from a systematic review on the prevalence of fever in children with COVID-19.

摘要

在荟萃分析中合成比例的两步法首先需要将比例转换到一个尺度,在该尺度上各研究中的比例分布可以用正态分布近似。常用的转换方法包括对数、对数it、反正弦和弗里曼 - 图基双反正弦转换。另外,广义线性混合模型(GLMM)可以使用精确二项式似然直接对数据进行拟合。与流行的两步法不同,这考虑了研究内方差的不确定性,无需正态近似,也不需要对零计数进行校正。然而,GLMM需要选择一个连接函数;我们说明了当不同的连接函数给出不同结果时,如何使用AIC来选择最佳拟合连接。我们还强调了连接函数的错误指定如何会引入偏差;使用经验三明治估计量来估计标准误差可能无法充分避免由于连接函数错误指定导致的覆盖不足。我们使用关于COVID - 19儿童发热患病率的系统评价数据展示了GLMM的应用和连接函数的选择。

相似文献

引用本文的文献

本文引用的文献

2
Double arcsine transform not appropriate for meta-analysis.双反正弦变换不适用于荟萃分析。
Res Synth Methods. 2022 Sep;13(5):645-648. doi: 10.1002/jrsm.1591. Epub 2022 Jul 22.
3
Bayesian meta-analysis using SAS PROC BGLIMM.贝叶斯元分析使用 SAS PROC BGLIMM。
Res Synth Methods. 2021 Nov;12(6):692-700. doi: 10.1002/jrsm.1513. Epub 2021 Jul 21.
6
A Bayesian multivariate meta-analysis of prevalence data.贝叶斯多元荟萃分析患病率数据。
Stat Med. 2020 Oct 15;39(23):3105-3119. doi: 10.1002/sim.8593. Epub 2020 Jun 8.
10
Use of Prediction Intervals in Network Meta-analysis.使用预测区间进行网络荟萃分析。
JAMA Netw Open. 2019 Aug 2;2(8):e199735. doi: 10.1001/jamanetworkopen.2019.9735.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验