Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijin, P. R. China.
Adv Mater. 2011 Mar 4;23(9):1145-53. doi: 10.1002/adma.201003503.
The carrier mobility for carbon electronic materials is an important parameter for optoelectronics. We report here some recently developed theoretical tools to predict the mobility without any free parameters. Carrier scatterings with phonons and traps are the key factors in evaluating the mobility. We consider three major scattering regimes: i) where the molecular internal vibration severely induces charge self-trapping and, thus, the hopping mechanism dominates; ii) where both intermolecular and intramolecular scatterings come to play roles, so the Holstein-Peierls polaron model is applied; and, iii) where charge is well delocalized with coherence length comparable with acoustic phonon wavelength, so that a deformation potential approach is more appropriate. We develop computational methods at the first-principles level for the three different cases that have extensive potential application in rationalizing material design.
碳电子材料的载流子迁移率是光电领域的一个重要参数。本文报道了一些最近开发的理论工具,可以在无需任何自由参数的情况下预测迁移率。载流子与声子和陷阱的散射是评估迁移率的关键因素。我们考虑了三种主要的散射机制:i)分子内部振动严重诱导电荷自陷,因此,跳跃机制占主导地位;ii)分子间和分子内散射都起作用,因此应用了Holstein-Peierls 极化子模型;iii)电荷具有良好的离域性和相干长度,与声子波长相当,因此更适合采用变形势方法。我们在第一性原理水平上开发了针对这三种不同情况的计算方法,它们在合理的材料设计中有广泛的应用潜力。