Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.
J Agric Food Chem. 2011 Jan 26;59(2):481-90. doi: 10.1021/jf102917v. Epub 2010 Dec 28.
The high molecular weight fraction of melanoidins formed in the Maillard reaction between isotopically labeled glucose and glycine has been characterized comprehensively using advanced (13)C and (15)N solid-state NMR with spectral editing. We have focused on the fate of glucose in a 1:1 molar ratio with glycine, heated as a coprecipitated powder at 125 °C for 2 h. Quantitative (13)C NMR spectra show that aromatic and alkene carbons make up only 40% of the total in the melanoidin. Spectra of melanoidins made from specifically labeled ((13)C1, (13)C2, (13)C3, and (13)C6) glucose are strikingly different, proving that specific structures of various types are formed. More than half of the glucose-C1 carbons form new C-C bonds, not just C-O and C-N bonds. Most C2 carbons are bonded to N or O and not protonated, while C3 shows the reverse trends. C4 and C5 remain significantly in alkyl OCH sites or become part of heterocyclic aromatic rings. C6 undergoes the least transformation, remaining half in OCH(2) groups. Functional groups characteristic of fragmentation are relatively insignificant, except for N/O-C2 ═ O groups indicating some C(1) + C(5) and C(2) + C(4) fragmentation. On the basis of (13)C-(13)C and (15)N-(13)C correlation spectra, 11 "monomer units" have been identified, including several types of alkyl chain or ring segments, furans, pyrroles, imidazoles, and oxazoles; these are mixed on the nanometer scale. This complexity explains why simple models cannot represent the structure of melanoidins. While none of the "monomer units" represents more than 15% of all C, the 11 units identified together account for more than half of all glucose carbon in the melanoidin.
在葡萄糖和甘氨酸之间的美拉德反应中形成的高分子量部分的类黑精已经使用先进的(13)C 和(15)N 固态 NMR 与光谱编辑进行了全面表征。我们专注于 1:1 摩尔比的葡萄糖与甘氨酸的命运,在 125°C 下作为共沉淀粉末加热 2 小时。定量(13)C NMR 光谱表明,芳香族和烯烃碳仅占类黑精总碳的 40%。由特异性标记的((13)C1、(13)C2、(13)C3 和(13)C6)葡萄糖制成的类黑精的光谱明显不同,证明形成了各种类型的特定结构。超过一半的葡萄糖-C1 碳原子形成新的 C-C 键,而不仅仅是 C-O 和 C-N 键。大多数 C2 碳原子与 N 或 O 键合,而不是质子化,而 C3 则呈现相反的趋势。C4 和 C5 仍然明显位于烷基 OCH 位或成为杂环芳环的一部分。C6 经历的转化最小,一半保留在 OCH(2)基团中。除了表示某些 C(1)+ C(5)和 C(2)+ C(4)片段化的 N/O-C2 ═ O 基团外,特征性的碎片功能基团相对不重要。基于(13)C-(13)C 和(15)N-(13)C 相关光谱,已经鉴定了 11 个“单体单元”,包括几种类型的烷基链或环段,呋喃,吡咯,咪唑和恶唑;这些在纳米尺度上混合。这种复杂性解释了为什么简单的模型不能代表类黑精的结构。虽然没有一个“单体单元”代表所有 C 的 15%以上,但鉴定的 11 个单元一起占类黑精中所有葡萄糖碳的一半以上。