School of Electrical and Computer Engineering, Purdue University,West Lafayette, IN 47907-2035, USA.
IEEE Trans Image Process. 2011 Jun;20(6):1611-26. doi: 10.1109/TIP.2010.2101611. Epub 2010 Dec 23.
The mixed raster content (MRC) standard (ITU-T T.44) specifies a framework for document compression which can dramatically improve the compression/quality tradeoff as compared to traditional lossy image compression algorithms. The key to MRC compression is the separation of the document into foreground and background layers, represented as a binary mask. Therefore, the resulting quality and compression ratio of a MRC document encoder is highly dependent upon the segmentation algorithm used to compute the binary mask. In this paper, we propose a novel multiscale segmentation scheme for MRC document encoding based upon the sequential application of two algorithms. The first algorithm, cost optimized segmentation (COS), is a blockwise segmentation algorithm formulated in a global cost optimization framework. The second algorithm, connected component classification (CCC), refines the initial segmentation by classifying feature vectors of connected components using an Markov random field (MRF) model. The combined COS/CCC segmentation algorithms are then incorporated into a multiscale framework in order to improve the segmentation accuracy of text with varying size. In comparisons to state-of-the-art commercial MRC products and selected segmentation algorithms in the literature, we show that the new algorithm achieves greater accuracy of text detection but with a lower false detection rate of nontext features. We also demonstrate that the proposed segmentation algorithm can improve the quality of decoded documents while simultaneously lowering the bit rate.
混合光栅内容 (MRC) 标准 (ITU-T T.44) 规定了一种文档压缩框架,与传统的有损图像压缩算法相比,它可以显著改善压缩/质量的权衡。MRC 压缩的关键是将文档分为前景和背景层,并用二进制掩模表示。因此,MRC 文档编码器的质量和压缩比高度依赖于用于计算二进制掩模的分割算法。在本文中,我们提出了一种新的基于两种算法顺序应用的 MRC 文档编码多尺度分割方案。第一种算法,成本优化分割 (COS),是一种基于全局成本优化框架的分块分割算法。第二种算法,连通分量分类 (CCC),通过使用马尔可夫随机场 (MRF) 模型对连通分量的特征向量进行分类,对初始分割进行细化。然后,将 COS/CCC 分割算法组合到多尺度框架中,以提高不同大小文本的分割准确性。与最先进的商业 MRC 产品和文献中选定的分割算法进行比较,我们表明新算法可以实现更高的文本检测精度,但具有更低的非文本特征的误检率。我们还证明,所提出的分割算法可以在降低比特率的同时提高解码文档的质量。