Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
J Phys Chem A. 2011 Feb 3;115(4):514-22. doi: 10.1021/jp108440f. Epub 2010 Dec 29.
The oxygen atom transfer reaction from the Mimoun-type complex MoO(η(2)-O(2))(2)OPH(3) to ethylene C(2)H(4) affording oxirane C(2)H(4)O has been investigated within the framework of the Bonding Evolution Theory in which the corresponding molecular mechanism is characterized by the topological analysis of the electron localization function (ELF) and Thom's catastrophe theory (CT). Topological analysis of ELF and electron density analysis reveals that all Mo-O bonds in MoO(η(2)-O(2))(2)OPH(3) and MoO(2)(η(2)-O(2))OPH(3) belong to closed-shell type interactions though negative values of total energy densities E(e)(r(BCP)) imply some covalent contribution. The peroxo O(i)-O(j) bonds are characterized as charge-shift or protocovalent species in which pairs of monosynaptic basins V(3)(O(i)), V(3)(O(j)) with a small electron population of ~0.25e each, are localized between core basins C(O(i)), C(O(j)). The oxygen transfer reaction from molybdenum diperoxo complex MoO(η(2)-O(2))(2)OPH(3) to C(2)H(4) system can be described by the following consecutive chemical events: (a) protocovalent peroxo O(2)-O(1) bond breaking, (b) reduction of the double C(1)=C(2) bond to single C(1)-C(2) bond in ethylene, (c) displacement of oxygen O(1) with two nonbonding basins, V(i=1,2)(O(1)), (d) increase of a number of the nonbonding basins to three (V(i=1,2,4)(O(1))); (e) reorganization and reduction in the number of nonbonding basis to two basins (V(i=1,4)(O(1))) resembling the ELF-topology of the nonbonding electron density in oxirane, (e) formation of the first O(1)-C(2) bond in oxirane, (f) C(2)-O(1)-C(2) ring closure, (g) formation of singular nonbonding basin V(O(2)) in new Mo=O(2) bond. The oxygen atom is transferred as an anionic moiety carrying a rather small electronic charge ranging from 0.5 to 0.7e.
Mimoun 型配合物 MoO(η(2)-O(2))(2)OPH(3) 向乙烯 C(2)H(4) 的氧原子转移反应,生成环氧化合物 C(2)H(4)O,已在键合演化理论的框架内进行了研究。在该理论中,相应的分子机制通过电子定域函数 (ELF) 的拓扑分析和 Thom 突变理论 (CT) 来表征。ELF 的拓扑分析和电子密度分析表明,MoO(η(2)-O(2))(2)OPH(3) 和 MoO(2)(η(2)-O(2))OPH(3) 中所有的 Mo-O 键均属于闭壳型相互作用,尽管总能量密度 E(e)(r(BCP)) 的负值表明存在一些共价贡献。过氧 O(i)-O(j) 键表现为电荷转移或原始共价物种,其中单突触盆地 V(3)(O(i))、V(3)(O(j)) 各带有约 0.25e 的小电子群,定位于核心盆地 C(O(i))、C(O(j)) 之间。钼双过氧配合物 MoO(η(2)-O(2))(2)OPH(3) 向 C(2)H(4) 体系的氧转移反应可以通过以下连续的化学事件来描述:(a) 原始过氧 O(2)-O(1) 键的断裂,(b) 乙烯中二键 C(1)=C(2) 还原为单键 C(1)-C(2),(c) 用两个非键盆地 V(i=1,2)(O(1))置换氧 O(1),(d) 非键盆地数量增加到三个(V(i=1,2,4)(O(1))),(e) 非键基础的重新组织和数量减少到两个盆地(V(i=1,4)(O(1))),类似于环氧乙烷中非键电子密度的 ELF 拓扑,(e) 形成环氧乙烷中的第一个 O(1)-C(2)键,(f) C(2)-O(1)-C(2) 环闭合,(g) 在新的 Mo=O(2)键中形成奇异的非键盆地 V(O(2))。氧原子作为带正电荷的阴离子部分转移,带电荷约为 0.5 至 0.7e。