Suppr超能文献

抑制剂结合后 HIV-1 逆转录酶结构动力学的变构抑制。

Allosteric suppression of HIV-1 reverse transcriptase structural dynamics upon inhibitor binding.

机构信息

Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA.

出版信息

Biophys J. 2011 Jan 5;100(1):144-53. doi: 10.1016/j.bpj.2010.11.004.

Abstract

Efavirenz is a second-generation nonnucleoside reverse transcriptase inhibitor (NNRTI) and a common component of clinically approved anti-AIDS regimens. NNRTIs are noncompetitive inhibitors that bind in a hydrophobic pocket in the p66 subunit of reverse transcriptase (RT) ∼10 Å from the polymerase active site. Hydrogen exchange mass spectrometry (HXMS) shows that efavirenz binding reduces molecular flexibility in multiple regions of RT heterodimer in addition to the NNRTI binding site. Of the 47 peptic fragments monitored by HXMS, 15 showed significantly altered H/D exchange rates in the presence of efavirenz. The slow cooperative unfolding of a β-sheet in the NNRTI binding pocket, which was previously observed in unliganded RT, is dramatically suppressed by efavirenz. HXMS also defines an extensive network of allosterically coupled sites, including four distinct regions of allosteric stabilization, and one region of allosteric destabilization. The effects of efavirenz binding extend > 60 Å from the NNRTI binding pocket. Allosteric changes to the structural dynamics propagate to the thumb and connection subdomains and RNase H domain of the p66 subunit as well as the thumb and palm subdomains of the p51 subunit. These allosteric regions may represent potential new drug targets.

摘要

依非韦伦是一种第二代非核苷类逆转录酶抑制剂(NNRTI),也是临床批准的抗艾滋病方案中的常见成分。NNRTIs 是非竞争性抑制剂,它们结合在逆转录酶(RT)p66 亚基的疏水性口袋中,距离聚合酶活性位点约 10Å。氢交换质谱(HXMS)表明,依非韦伦结合除了 NNRTI 结合位点之外,还会降低 RT 异二聚体中多个区域的分子灵活性。在 HXMS 监测的 47 个肽片段中,有 15 个在依非韦伦存在的情况下显示出明显改变的 H/D 交换率。在未配体的 RT 中,先前观察到 NNRTI 结合口袋中β-折叠的缓慢协同展开,被依非韦伦显著抑制。HXMS 还定义了一个广泛的变构偶联位点网络,包括四个不同的变构稳定区域和一个变构不稳定区域。依非韦伦结合的影响从 NNRTI 结合口袋延伸超过 60Å。结构动力学的变构变化会传播到 p66 亚基的拇指和连接亚域以及 RNase H 结构域,以及 p51 亚基的拇指和手掌亚域。这些变构区域可能代表潜在的新药物靶点。

相似文献

1
Allosteric suppression of HIV-1 reverse transcriptase structural dynamics upon inhibitor binding.
Biophys J. 2011 Jan 5;100(1):144-53. doi: 10.1016/j.bpj.2010.11.004.
2
Efavirenz binding site in HIV-1 reverse transcriptase monomers.
Biochemistry. 2010 Dec 14;49(49):10565-73. doi: 10.1021/bi101480z. Epub 2010 Nov 19.
3
Efavirenz binding to HIV-1 reverse transcriptase monomers and dimers.
Biochemistry. 2010 Jan 26;49(3):601-10. doi: 10.1021/bi901579y.
4
Mechanism of allosteric inhibition of HIV-1 reverse transcriptase revealed by single-molecule and ensemble fluorescence.
Nucleic Acids Res. 2014 Oct;42(18):11687-96. doi: 10.1093/nar/gku819. Epub 2014 Sep 17.
5
Effects of efavirenz binding on the subunit equilibria of HIV-1 reverse transcriptase.
Biochemistry. 2006 Mar 7;45(9):2779-89. doi: 10.1021/bi051915z.
6
Thumbs down for HIV: domain level rearrangements do occur in the NNRTI-bound HIV-1 reverse transcriptase.
J Am Chem Soc. 2012 Aug 8;134(31):12885-8. doi: 10.1021/ja301565k. Epub 2012 Jul 30.
7
Solution structural dynamics of HIV-1 reverse transcriptase heterodimer.
Biochemistry. 2009 Aug 18;48(32):7646-55. doi: 10.1021/bi900790x.

引用本文的文献

3
Covalent and noncovalent strategies for targeting Lys102 in HIV-1 reverse transcriptase.
Eur J Med Chem. 2023 Dec 15;262:115894. doi: 10.1016/j.ejmech.2023.115894. Epub 2023 Oct 20.
4
Retroviral RNase H: Structure, mechanism, and inhibition.
Enzymes. 2021;50:227-247. doi: 10.1016/bs.enz.2021.07.007. Epub 2021 Sep 24.
7
Small Conformational Changes Underlie Evolution of Resistance to NNRTI in HIV Reverse Transcriptase.
Biophys J. 2020 May 19;118(10):2489-2501. doi: 10.1016/j.bpj.2020.04.008. Epub 2020 Apr 16.
9
Binding interface and impact on protease cleavage for an RNA aptamer to HIV-1 reverse transcriptase.
Nucleic Acids Res. 2020 Mar 18;48(5):2709-2722. doi: 10.1093/nar/gkz1224.
10
The Journey of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) from Lab to Clinic.
J Med Chem. 2019 May 23;62(10):4851-4883. doi: 10.1021/acs.jmedchem.8b00843. Epub 2018 Dec 27.

本文引用的文献

1
Efavirenz binding site in HIV-1 reverse transcriptase monomers.
Biochemistry. 2010 Dec 14;49(49):10565-73. doi: 10.1021/bi101480z. Epub 2010 Nov 19.
2
Efavirenz binding to HIV-1 reverse transcriptase monomers and dimers.
Biochemistry. 2010 Jan 26;49(3):601-10. doi: 10.1021/bi901579y.
3
Macromolecular micromovements: how RNA polymerase translocates.
Curr Opin Struct Biol. 2009 Dec;19(6):701-7. doi: 10.1016/j.sbi.2009.10.002. Epub 2009 Nov 2.
4
The origin of allosteric functional modulation: multiple pre-existing pathways.
Structure. 2009 Aug 12;17(8):1042-50. doi: 10.1016/j.str.2009.06.008.
5
Solution structural dynamics of HIV-1 reverse transcriptase heterodimer.
Biochemistry. 2009 Aug 18;48(32):7646-55. doi: 10.1021/bi900790x.
8
Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition.
J Mol Biol. 2009 Jan 23;385(3):693-713. doi: 10.1016/j.jmb.2008.10.071. Epub 2008 Nov 3.
9
Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates.
Science. 2008 Nov 14;322(5904):1092-7. doi: 10.1126/science.1163108.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验