Suppr超能文献

HIV-1 逆转录酶单体中的依非韦伦结合位点。

Efavirenz binding site in HIV-1 reverse transcriptase monomers.

机构信息

Department of Chemistry, Case Western Reserve University,10900 Euclid Avenue, Cleveland, Ohio 44106, United States.

出版信息

Biochemistry. 2010 Dec 14;49(49):10565-73. doi: 10.1021/bi101480z. Epub 2010 Nov 19.

Abstract

Efavirenz (EFV) is a potent nonnucleoside reverse transcriptase inhibitor (NNRTI) used in the treatment of AIDS. NNRTIs bind in a hydrophobic pocket located in the p66 subunit of reverse transcriptase (RT), which is not present in crystal structures of RT without an inhibitor. Recent studies showed that monomeric forms of the p66 and p51 subunits bind efavirenz with micromolar affinity. The effect of efavirenz on the solution conformations of p66 and p51 monomers was studied by hydrogen-deuterium exchange mass spectrometry (HXMS) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). HXMS data reveal that five peptides, four of which contain efavirenz contact residues seen in the crystal structure of the RT-EFV complex, exhibit a reduced level of exchange in monomer-EFV complexes. Moreover, peptide 232-246 undergoes slow cooperative unfolding-refolding in the bound monomers, but at a rate much slower than that observed in the p66 subunit of the RT heterodimer [Seckler, J. M., Howard, K. J., Barkley, M. D., and Wintrode, P. L. (2009) Biochemistry 48, 7646-7655]. These results suggest that the efavirenz binding site on p66 and p51 monomers is similar to the NNRTI binding pocket in the p66 subunit of RT. Nanoelectrospray ionization FT-ICR mass spectra indicate that the intact monomers each have (at least) two different conformations. In the presence of efavirenz, the mass spectra change significantly and suggest that p51 adopts a single, more compact conformation, whereas p66 undergoes facile, electrospray-induced cleavage. The population shift is consistent with a selected-fit binding mechanism.

摘要

依非韦伦(EFV)是一种强效的非核苷类逆转录酶抑制剂(NNRTI),用于治疗艾滋病。NNRTIs 结合在位于逆转录酶(RT)p66 亚基中的疏水口袋中,而在没有抑制剂的 RT 晶体结构中不存在该口袋。最近的研究表明,p66 和 p51 亚基的单体形式以微摩尔亲和力结合依非韦伦。通过氢氘交换质谱(HXMS)和傅里叶变换离子回旋共振质谱(FT-ICR MS)研究了依非韦伦对 p66 和 p51 单体溶液构象的影响。HXMS 数据表明,有五个肽,其中四个含有在 RT-EFV 复合物晶体结构中看到的依非韦伦接触残基,在单体-EFV 复合物中显示出交换水平降低。此外,肽 232-246 在结合的单体中经历缓慢的协同展开-折叠,但速度比在 RT 异二聚体的 p66 亚基中观察到的速度慢得多[Seckler,J.M.,Howard,K.J.,Barkley,M.D.和 Wintrode,P.L.(2009)生物化学 48,7646-7655]。这些结果表明,p66 和 p51 单体上的依非韦伦结合位点类似于 RT p66 亚基中的 NNRTI 结合口袋。纳升电喷雾电离 FT-ICR 质谱表明,完整的单体各有(至少)两种不同的构象。在依非韦伦存在下,质谱发生显著变化,表明 p51 采用单一、更紧凑的构象,而 p66 则易于发生电喷雾诱导的裂解。种群转移与选择拟合结合机制一致。

相似文献

1
Efavirenz binding site in HIV-1 reverse transcriptase monomers.
Biochemistry. 2010 Dec 14;49(49):10565-73. doi: 10.1021/bi101480z. Epub 2010 Nov 19.
2
Efavirenz binding to HIV-1 reverse transcriptase monomers and dimers.
Biochemistry. 2010 Jan 26;49(3):601-10. doi: 10.1021/bi901579y.
3
Allosteric suppression of HIV-1 reverse transcriptase structural dynamics upon inhibitor binding.
Biophys J. 2011 Jan 5;100(1):144-53. doi: 10.1016/j.bpj.2010.11.004.
4
Effects of efavirenz binding on the subunit equilibria of HIV-1 reverse transcriptase.
Biochemistry. 2006 Mar 7;45(9):2779-89. doi: 10.1021/bi051915z.
5
The HIV-1 p66 homodimeric RT exhibits different conformations in the binding-competent and -incompetent NNRTI site.
Proteins. 2017 Dec;85(12):2191-2197. doi: 10.1002/prot.25383. Epub 2017 Sep 26.
9
The N348I mutation at the connection subdomain of HIV-1 reverse transcriptase decreases binding to nevirapine.
J Biol Chem. 2010 Dec 3;285(49):38700-9. doi: 10.1074/jbc.M110.153783. Epub 2010 Sep 27.

引用本文的文献

1
Biophysical Characterization of p51 and p66 Monomers of HIV-1 Reverse Transcriptase with Their Inhibitors.
Protein J. 2023 Dec;42(6):741-752. doi: 10.1007/s10930-023-10156-y. Epub 2023 Sep 20.
2
The HIV-1 p66 homodimeric RT exhibits different conformations in the binding-competent and -incompetent NNRTI site.
Proteins. 2017 Dec;85(12):2191-2197. doi: 10.1002/prot.25383. Epub 2017 Sep 26.
3
An integrated chemical biology approach reveals the mechanism of action of HIV replication inhibitors.
Bioorg Med Chem. 2017 Dec 1;25(23):6248-6265. doi: 10.1016/j.bmc.2017.03.061. Epub 2017 Apr 8.
6
Allosteric suppression of HIV-1 reverse transcriptase structural dynamics upon inhibitor binding.
Biophys J. 2011 Jan 5;100(1):144-53. doi: 10.1016/j.bpj.2010.11.004.

本文引用的文献

1
Allosteric suppression of HIV-1 reverse transcriptase structural dynamics upon inhibitor binding.
Biophys J. 2011 Jan 5;100(1):144-53. doi: 10.1016/j.bpj.2010.11.004.
2
Homodimerization of the p51 subunit of HIV-1 reverse transcriptase.
Biochemistry. 2010 Apr 6;49(13):2821-33. doi: 10.1021/bi902116z.
3
Efavirenz binding to HIV-1 reverse transcriptase monomers and dimers.
Biochemistry. 2010 Jan 26;49(3):601-10. doi: 10.1021/bi901579y.
4
Kinetics of association and dissociation of HIV-1 reverse transcriptase subunits.
Biochemistry. 2009 Sep 29;48(38):9084-93. doi: 10.1021/bi9010495.
5
Solution characterization of [methyl-(13)C]methionine HIV-1 reverse transcriptase by NMR spectroscopy.
Antiviral Res. 2009 Dec;84(3):205-14. doi: 10.1016/j.antiviral.2009.07.021. Epub 2009 Aug 7.
6
Solution structural dynamics of HIV-1 reverse transcriptase heterodimer.
Biochemistry. 2009 Aug 18;48(32):7646-55. doi: 10.1021/bi900790x.
7
Separation of protein oligomers by blue native gel electrophoresis.
Anal Biochem. 2009 May 1;388(1):170-2. doi: 10.1016/j.ab.2009.02.019. Epub 2009 Feb 20.
9
Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs.
Nat Med. 2008 Jul;14(7):762-6. doi: 10.1038/nm1777. Epub 2008 Jun 15.
10
Mechanisms of inhibition of HIV replication by non-nucleoside reverse transcriptase inhibitors.
Virus Res. 2008 Jun;134(1-2):147-56. doi: 10.1016/j.virusres.2008.01.002. Epub 2008 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验