Suppr超能文献

不可溶性金属纳米颗粒致人细胞杀伤的随机阈微剂量模型。

Stochastic threshold microdose model for cell killing by insoluble metallic nanomaterial particles.

机构信息

Lovelace Respiratory Research Institute.

出版信息

Dose Response. 2010 Mar 10;8(4):428-47. doi: 10.2203/dose-response.09-061.Scott.

Abstract

This paper introduces a novel microdosimetric model for metallic nanomaterial-particles (MENAP)-induced cytotoxicity. The focus is on the engineered insoluble MENAP which represent a significant breakthrough in the design and development of new products for consumers, industry, and medicine. Increased production is rapidly occurring and may cause currently unrecognized health effects (e.g., nervous system dysfunction, heart disease, cancer); thus, dose-response models for MENAP-induced biological effects are needed to facilitate health risk assessment. The stochasticthresholdmicrodose (STM) model presented introduces novel stochastic microdose metrics for use in constructing dose-response relationships for the frequency of specific cellular (e.g., cell killing, mutations, neoplastic transformation) or subcellular (e.g., mitochondria dysfunction) effects. A key metric is the exposure-time-dependent, specific burden (MENAP count) for a given critical target (e.g., mitochondria, nucleus). Exceeding a stochastic threshold specific burden triggers cell death. For critical targets in the cytoplasm, the autophagic mode of death is triggered. For the nuclear target, the apoptotic mode of death is triggered. Overall cell survival is evaluated for the indicated competing modes of death when both apply. The STM model can be applied to cytotoxicity data using Bayesian methods implemented via Markov chain Monte Carlo.

摘要

本文介绍了一种用于金属纳米颗粒(MENAP)诱导细胞毒性的新型微剂量学模型。重点是工程不溶性 MENAP,这是在为消费者、工业和医学设计和开发新产品方面的重大突破。产量的增加正在迅速发生,可能导致目前尚未认识到的健康影响(例如,神经系统功能障碍、心脏病、癌症);因此,需要 MENAP 诱导的生物学效应的剂量-反应模型来促进健康风险评估。所提出的随机阈值微剂量 (STM) 模型引入了新的随机微剂量指标,用于构建特定细胞(例如,细胞杀伤、突变、肿瘤转化)或亚细胞(例如,线粒体功能障碍)效应频率的剂量-反应关系。一个关键指标是给定关键靶标(例如,线粒体、细胞核)的暴露时间依赖性特定负担(MENAP 计数)。超过特定的随机阈值负担会触发细胞死亡。对于细胞质中的关键靶标,触发自噬死亡模式。对于核靶标,触发凋亡死亡模式。当两者都适用时,会评估指定的竞争死亡模式下的总体细胞存活情况。STM 模型可以通过通过马尔可夫链蒙特卡罗实现的贝叶斯方法应用于细胞毒性数据。

相似文献

1
Stochastic threshold microdose model for cell killing by insoluble metallic nanomaterial particles.
Dose Response. 2010 Mar 10;8(4):428-47. doi: 10.2203/dose-response.09-061.Scott.
2
Are some neurons hypersensitive to metallic nanoparticles?
Dose Response. 2012;10(1):37-57. doi: 10.2203/dose-response.10-006.Scott. Epub 2010 Jul 2.
3
Introducing Biological Microdosimetry for Ionising Radiation.
Radiat Prot Dosimetry. 2000 Oct 1;91(4):377-384. doi: 10.1093/oxfordjournals.rpd.a033247.
4
Markov chain Monte Carlo analysis for the selection of a cell-killing model under high-dose-rate irradiation.
Med Phys. 2017 Oct;44(10):5522-5532. doi: 10.1002/mp.12508. Epub 2017 Sep 15.
5
7
Dosimetric adjustments for interspecies extrapolation of inhaled poorly soluble particles (PSP).
Inhal Toxicol. 2005 Jun-Jul;17(7-8):317-34. doi: 10.1080/08958370590929394.
8
The carcinogenic potential of nanomaterials, their release from products and options for regulating them.
Int J Hyg Environ Health. 2011 Jun;214(3):231-8. doi: 10.1016/j.ijheh.2010.11.004. Epub 2010 Dec 17.
9
Alpha-particle Monte Carlo simulation for microdosimetric calculations using a commercial spreadsheet.
Phys Med Biol. 2007 Apr 7;52(7):1909-22. doi: 10.1088/0031-9155/52/7/010. Epub 2007 Mar 12.
10
Pro-Death or Pro-Survival: Contrasting Paradigms on Nanomaterial-Induced Autophagy and Exploitations for Cancer Therapy.
Acc Chem Res. 2019 Nov 19;52(11):3164-3176. doi: 10.1021/acs.accounts.9b00397. Epub 2019 Oct 17.

引用本文的文献

1
Are some neurons hypersensitive to metallic nanoparticles?
Dose Response. 2012;10(1):37-57. doi: 10.2203/dose-response.10-006.Scott. Epub 2010 Jul 2.

本文引用的文献

1
Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat.
Nanotoxicology. 2010 Jun 1;4(2):150-160. doi: 10.3109/17435390903337693.
2
Anti-proliferative activity of silver nanoparticles.
BMC Cell Biol. 2009 Sep 17;10:65. doi: 10.1186/1471-2121-10-65.
7
A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors.
Environ Health Perspect. 2006 Feb;114(2):165-72. doi: 10.1289/ehp.8284.
8
Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles.
Environ Health Perspect. 2005 Jul;113(7):823-39. doi: 10.1289/ehp.7339.
9
Nanomedicine: current status and future prospects.
FASEB J. 2005 Mar;19(3):311-30. doi: 10.1096/fj.04-2747rev.
10
Nanotoxicology.
Occup Environ Med. 2004 Sep;61(9):727-8. doi: 10.1136/oem.2004.013243.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验