Suppr超能文献

随机阈值:一种新的解释随机放射生物学效应非线性剂量反应关系的方法。

Stochastic thresholds: a novel explanation of nonlinear dose-response relationships for stochastic radiobiological effects.

机构信息

Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA.

出版信息

Dose Response. 2006 May 22;3(4):547-67. doi: 10.2203/dose-response.003.04.009.

Abstract

New research data for low-dose, low-linear energy transfer (LET) radiation-induced, stochastic effects (mutations and neoplastic transformations) are modeled using the recently published NEOTRANS(3) model. The model incorporates a protective, stochastic threshold (StoThresh) at low doses for activating cooperative protective processes considered to include presumptive p53-dependent, high-fidelity repair of nuclear DNA damage in competition with presumptive p53-dependent apoptosis and a novel presumptive p53-independent protective apoptosis mediated (PAM) process which selectively removes genomically compromised cells (mutants, neoplastic transformants, micronucleated cells, etc.). The protective StoThresh are considered to fall in a relatively narrow low-dose zone (Transition Zone A). Below Transition Zone A is the ultra-low-dose region where it is assumed that only low-fidelity DNA repair is activated along with presumably apoptosis. For this zone there is evidence for an increase in mutations with increases in dose. Just above Transition Zone A, a Zone of Maximal Protection (suppression of stochastic effects) arises and is attributed to maximal cooperation of high-fidelity, DNA repair/apoptosis and the PAM process. The width of the Zone of Maximal Protection depends on low-LET radiation dose rate and appears to depend on photon radiation energy. Just above the Zone of Maximal Protection is Transition Zone B, where deleterious StoThresh for preventing the PAM process fall. Just above Transition Zone B is a zone of moderate doses where complete inhibition of the PAM process appears to occur. However, for both Transition Zone B and the zone of complete inhibition of the PAM process, high-fidelity DNA repair/apoptosis are presumed to still operate. The indicated protective and deleterious StoThresh lead to nonlinear, hormetic-type dose-response relationships for low-LET radiation-induced mutations, neoplastic transformation and, presumably, also for cancer.

摘要

新的低剂量、低线性能量转移(LET)辐射诱导的随机性效应(突变和肿瘤转化)研究数据使用最近发表的 NEOTRANS(3)模型进行建模。该模型在低剂量下包含一个保护性的随机性阈值(StoThresh),用于激活协同保护过程,这些过程被认为包括假定的 p53 依赖性、核 DNA 损伤的高保真修复,与假定的 p53 依赖性细胞凋亡竞争,以及一种新的假定的 p53 独立的保护性细胞凋亡介导(PAM)过程,该过程选择性地去除基因组受损的细胞(突变体、肿瘤转化体、微核细胞等)。保护性 StoThresh 被认为处于相对较窄的低剂量区(过渡区 A)。过渡区 A 以下是超低剂量区,在该区域中仅假定激活低保真 DNA 修复以及可能的细胞凋亡。对于该区域,有证据表明随着剂量的增加,突变增加。就在过渡区 A 上方,出现了最大保护区(抑制随机性效应),这归因于高保真、DNA 修复/细胞凋亡和 PAM 过程的最大合作。最大保护区的宽度取决于低 LET 辐射剂量率,并且似乎取决于光子辐射能量。就在最大保护区上方是过渡区 B,其中阻止 PAM 过程的有害 StoThresh 下降。就在过渡区 B 上方是一个中等剂量区,其中 PAM 过程似乎完全被抑制。然而,对于过渡区 B 和 PAM 过程完全抑制的区域,高保真 DNA 修复/细胞凋亡被假定仍在起作用。指示的保护性和有害性 StoThresh 导致低 LET 辐射诱导的突变、肿瘤转化以及假定的癌症的非线性、激素样剂量反应关系。

相似文献

2
A biological-based model that links genomic instability, bystander effects, and adaptive response.
Mutat Res. 2004 Dec 2;568(1):129-43. doi: 10.1016/j.mrfmmm.2004.06.051.
4
Low-dose radiation risk extrapolation fallacy associated with the linear-no-threshold model.
Hum Exp Toxicol. 2008 Feb;27(2):163-8. doi: 10.1177/0960327107083410.
5
Mechanistic basis for nonlinear dose-response relationships for low-dose radiation-induced stochastic effects.
Nonlinearity Biol Toxicol Med. 2003 Jan;1(1):93-122. doi: 10.1080/15401420390844492.
8
Low-dose radiation and genotoxic chemicals can protect against stochastic biological effects.
Nonlinearity Biol Toxicol Med. 2004 Jul;2(3):185-211. doi: 10.1080/15401420490507602.
9
10
Nonlinear response for neoplastic transformation following low doses of low let radiation.
Nonlinearity Biol Toxicol Med. 2005 Jan;3(1):113-24. doi: 10.2201/nonlin.003.01.007.

引用本文的文献

1
Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models.
J Radiat Res. 2017 Mar 1;58(2):165-182. doi: 10.1093/jrr/rrw120.
2
Low-radiation environment affects the development of protection mechanisms in V79 cells.
Radiat Environ Biophys. 2015 May;54(2):183-94. doi: 10.1007/s00411-015-0587-4. Epub 2015 Jan 31.
3
Donor-specific cell-based assays in studying sensitivity to low-dose radiation: a population-based perspective.
Front Public Health. 2014 Nov 18;2:244. doi: 10.3389/fpubh.2014.00244. eCollection 2014.
4
Radiation-hormesis phenotypes, the related mechanisms and implications for disease prevention and therapy.
J Cell Commun Signal. 2014 Dec;8(4):341-52. doi: 10.1007/s12079-014-0250-x. Epub 2014 Oct 17.
5
Potential treatment of inflammatory and proliferative diseases by ultra-low doses of ionizing radiations.
Dose Response. 2012 Dec;10(4):610-25. doi: 10.2203/dose-response.12-017.Sanders. Epub 2012 Oct 9.
6
Modeling DNA double-strand break repair kinetics as an epiregulated cell-community-wide (epicellcom) response to radiation stress.
Dose Response. 2011;9(4):579-601. doi: 10.2203/dose-response.10-039.Scott. Epub 2011 Feb 10.
7
Stochastic threshold microdose model for cell killing by insoluble metallic nanomaterial particles.
Dose Response. 2010 Mar 10;8(4):428-47. doi: 10.2203/dose-response.09-061.Scott.
8
Special issue introduction.
Dose Response. 2010 Jan 4;8(2):122-4. doi: 10.2203/dose-response.09-060.Scott.
10
It's time for a new low-dose-radiation risk assessment paradigm--one that acknowledges hormesis.
Dose Response. 2008;6(4):333-51. doi: 10.2203/dose-response.07-005.Scott. Epub 2007 Sep 30.

本文引用的文献

3
Low-dose radiation and genotoxic chemicals can protect against stochastic biological effects.
Nonlinearity Biol Toxicol Med. 2004 Jul;2(3):185-211. doi: 10.1080/15401420490507602.
4
Responses to low doses of ionizing radiation in biological systems.
Nonlinearity Biol Toxicol Med. 2004 Jul;2(3):143-71. doi: 10.1080/15401420490507431.
5
Mechanistic basis for nonlinear dose-response relationships for low-dose radiation-induced stochastic effects.
Nonlinearity Biol Toxicol Med. 2003 Jan;1(1):93-122. doi: 10.1080/15401420390844492.
7
Low-dose radiation risk extrapolation fallacy associated with the linear-no-threshold model.
Hum Exp Toxicol. 2008 Feb;27(2):163-8. doi: 10.1177/0960327107083410.
8
The bell tolls for LNT.
Health Phys. 2004 Nov;87(5 Suppl):S47-50. doi: 10.1097/00004032-200411002-00004.
10
A biological-based model that links genomic instability, bystander effects, and adaptive response.
Mutat Res. 2004 Dec 2;568(1):129-43. doi: 10.1016/j.mrfmmm.2004.06.051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验