Suppr超能文献

利用片段组装进行 RDC 衍生蛋白骨架共振赋值。

RDC derived protein backbone resonance assignment using fragment assembly.

机构信息

Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.

出版信息

J Biomol NMR. 2011 Feb;49(2):85-98. doi: 10.1007/s10858-010-9467-z. Epub 2010 Dec 30.

Abstract

Experimental residual dipolar couplings (RDCs) in combination with structural models have the potential for accelerating the protein backbone resonance assignment process because RDCs can be measured accurately and interpreted quantitatively. However, this application has been limited due to the need for very high-resolution structural templates. Here, we introduce a new approach to resonance assignment based on optimal agreement between the experimental and calculated RDCs from a structural template that contains all assignable residues. To overcome the inherent computational complexity of such a global search, we have adopted an efficient two-stage search algorithm and included connectivity data from conventional assignment experiments. In the first stage, a list of strings of resonances (CA-links) is generated via exhaustive searches for short segments of sequentially connected residues in a protein (local templates), and then ranked by the agreement of the experimental (13)C(α) chemical shifts and (15)N-(1)H RDCs to the predicted values for each local template. In the second stage, the top CA-links for different local templates in stage I are combinatorially connected to produce CA-links for all assignable residues. The resulting CA-links are ranked for resonance assignment according to their measured RDCs and predicted values from a tertiary structure. Since the final RDC ranking of CA-links includes all assignable residues and the assignment is derived from a "global minimum", our approach is far less reliant on the quality of experimental data and structural templates. The present approach is validated with the assignments of several proteins, including a 42 kDa maltose binding protein (MBP) using RDCs and structural templates of varying quality. Since backbone resonance assignment is an essential first step for most of biomolecular NMR applications and is often a bottleneck for large systems, we expect that this new approach will improve the efficiency of the assignment process for small and medium size proteins and will extend the size limits assignable by current methods for proteins with structural models.

摘要

实验残余偶极耦合(RDC)与结构模型相结合,具有加速蛋白质骨架共振分配过程的潜力,因为 RDC 可以被准确测量并进行定量解释。然而,由于需要非常高分辨率的结构模板,这种应用受到了限制。在这里,我们介绍了一种新的基于实验和计算 RDC 之间最佳一致性的共振分配方法,该方法使用包含所有可分配残基的结构模板。为了克服这种全局搜索固有的计算复杂性,我们采用了一种高效的两阶段搜索算法,并包括了来自传统分配实验的连通性数据。在第一阶段,通过对蛋白质中顺序连接的短片段进行穷举搜索,生成一系列共振(CA 链接)的列表(局部模板),然后根据实验(13)C(α)化学位移和(15)N-(1)H RDC 与每个局部模板的预测值之间的一致性对其进行排序。在第二阶段,将第一阶段中不同局部模板的前 CA 链接进行组合连接,以生成所有可分配残基的 CA 链接。根据实测 RDC 和三级结构预测值,对生成的 CA 链接进行共振分配排序。由于最终 CA 链接的 RDC 排序包含所有可分配残基,并且分配是从“全局最小值”得出的,因此我们的方法对实验数据和结构模板的质量依赖性要小得多。该方法已通过对几种蛋白质的分配进行验证,包括使用 RDC 和不同质量的结构模板的 42 kDa 麦芽糖结合蛋白(MBP)的分配。由于骨架共振分配是大多数生物分子 NMR 应用的基本第一步,并且通常是大型系统的瓶颈,因此我们预计这种新方法将提高小分子和中等大小蛋白质分配过程的效率,并扩展当前方法可分配的蛋白质的大小限制具有结构模型的蛋白质。

相似文献

1
RDC derived protein backbone resonance assignment using fragment assembly.
J Biomol NMR. 2011 Feb;49(2):85-98. doi: 10.1007/s10858-010-9467-z. Epub 2010 Dec 30.
2
Backbone assignment of proteins with known structure using residual dipolar couplings.
J Biomol NMR. 2004 Sep;30(1):25-35. doi: 10.1023/B:JNMR.0000042955.14647.77.
3
Protein side-chain resonance assignment and NOE assignment using RDC-defined backbones without TOCSY data.
J Biomol NMR. 2011 Aug;50(4):371-95. doi: 10.1007/s10858-011-9522-4. Epub 2011 Jun 25.
4
High-resolution protein structure determination starting with a global fold calculated from exact solutions to the RDC equations.
J Biomol NMR. 2009 Nov;45(3):265-81. doi: 10.1007/s10858-009-9366-3. Epub 2009 Aug 27.
5
Backbone resonance assignment and order tensor estimation using residual dipolar couplings.
J Biomol NMR. 2011 Aug;50(4):357-69. doi: 10.1007/s10858-011-9521-5. Epub 2011 Jun 12.
7
An improved algorithm for MFR fragment assembly.
J Biomol NMR. 2012 Jun;53(2):149-59. doi: 10.1007/s10858-012-9632-7. Epub 2012 May 13.
8
Automated assignment of NMR spectra of macroscopically oriented proteins using simulated annealing.
J Magn Reson. 2018 Aug;293:104-114. doi: 10.1016/j.jmr.2018.06.004. Epub 2018 Jun 17.
9
PACES: Protein sequential assignment by computer-assisted exhaustive search.
J Biomol NMR. 2003 Jun;26(2):93-111. doi: 10.1023/a:1023589029301.
10
A polynomial-time nuclear vector replacement algorithm for automated NMR resonance assignments.
J Comput Biol. 2004;11(2-3):277-98. doi: 10.1089/1066527041410436.

引用本文的文献

2
A complex affair: Attraction and repulsion make occludin and ZO-1 function!
Tissue Barriers. 2013 Jan 1;1(1):e23496. doi: 10.4161/tisb.23496.
3
Sparse labeling of proteins: structural characterization from long range constraints.
J Magn Reson. 2014 Apr;241:32-40. doi: 10.1016/j.jmr.2013.12.012.
4
Advances in the REDCAT software package.
BMC Bioinformatics. 2013 Oct 7;14:302. doi: 10.1186/1471-2105-14-302.
5
Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins.
J Biomol NMR. 2011 Nov;51(3):369-78. doi: 10.1007/s10858-011-9567-4. Epub 2011 Sep 14.

本文引用的文献

1
2
Facile measurement of ¹H-¹5N residual dipolar couplings in larger perdeuterated proteins.
J Biomol NMR. 2010 Oct;48(2):65-70. doi: 10.1007/s10858-010-9441-9. Epub 2010 Aug 7.
3
Structure-oriented methods for protein NMR data analysis.
Prog Nucl Magn Reson Spectrosc. 2010 May;56(4):311-28. doi: 10.1016/j.pnmrs.2010.02.001. Epub 2010 Mar 3.
4
SAGA: rapid automatic mainchain NMR assignment for large proteins.
J Biomol NMR. 2010 Apr;46(4):281-98. doi: 10.1007/s10858-010-9403-2. Epub 2010 Mar 16.
5
Automated NMR Assignment and Protein Structure Determination using Sparse Dipolar Coupling Constraints.
Prog Nucl Magn Reson Spectrosc. 2009 Aug 1;55(2):101-127. doi: 10.1016/j.pnmrs.2008.12.001.
8
Robust structure-based resonance assignment for functional protein studies by NMR.
J Biomol NMR. 2010 Feb;46(2):157-73. doi: 10.1007/s10858-009-9390-3. Epub 2009 Dec 19.
9
Measurement and interpretation of 15N-1H residual dipolar couplings in larger proteins.
J Magn Reson. 2010 Mar;203(1):11-28. doi: 10.1016/j.jmr.2009.11.014. Epub 2009 Nov 26.
10
HNCO-based measurement of one-bond amide 15N-1H couplings with optimized precision.
J Biomol NMR. 2010 Feb;46(2):175-89. doi: 10.1007/s10858-009-9391-2. Epub 2009 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验