NMR, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
J Biomol NMR. 2010 Feb;46(2):157-73. doi: 10.1007/s10858-009-9390-3. Epub 2009 Dec 19.
High-throughput functional protein NMR studies, like protein interactions or dynamics, require an automated approach for the assignment of the protein backbone. With the availability of a growing number of protein 3D structures, a new class of automated approaches, called structure-based assignment, has been developed quite recently. Structure-based approaches use primarily NMR input data that are not based on J-coupling and for which connections between residues are not limited by through bonds magnetization transfer efficiency. We present here a robust structure-based assignment approach using mainly H(N)-H(N) NOEs networks, as well as (1)H-(15) N residual dipolar couplings and chemical shifts. The NOEnet complete search algorithm is robust against assignment errors, even for sparse input data. Instead of a unique and partly erroneous assignment solution, an optimal assignment ensemble with an accuracy equal or near to 100% is given by NOEnet. We show that even low precision assignment ensembles give enough information for functional studies, like modeling of protein-complexes. Finally, the combination of NOEnet with a low number of ambiguous J-coupling sequential connectivities yields a high precision assignment ensemble. NOEnet will be available under: http://www.icsn.cnrs-gif.fr/download/nmr.
高通量功能蛋白质 NMR 研究,如蛋白质相互作用或动力学,需要一种自动化的方法来分配蛋白质骨架。随着越来越多的蛋白质 3D 结构的出现,最近开发了一类新的自动化方法,称为基于结构的分配。基于结构的方法主要使用 NMR 输入数据,这些数据不基于 J 耦合,并且残基之间的连接不受通过键磁化转移效率的限制。我们在这里提出了一种使用主要的 H(N)-H(N)NOE 网络以及(1)H-(15)N 残差偶极耦合和化学位移的稳健基于结构的分配方法。NOEnet 完整搜索算法对分配错误具有很强的鲁棒性,即使对于稀疏的输入数据也是如此。NOEnet 给出的不是唯一的、部分错误的分配解决方案,而是一个具有 100%或接近 100%精度的最优分配集合。我们表明,即使是低精度的分配集合也能为功能研究提供足够的信息,如蛋白质复合物的建模。最后,将 NOEnet 与少量模糊的 J 耦合序列连接相结合,可得到高精度的分配集合。NOEnet 可在以下网址获得:http://www.icsn.cnrs-gif.fr/download/nmr。