Suppr超能文献

两种用于二元临床试验数据非劣效性评估的新协变量调整方法。

Two new covariate adjustment methods for non-inferiority assessment of binary clinical trials data.

作者信息

Hou Yan, Ding Victoria, Li Kang, Zhou Xiao-Hua

机构信息

Department of Biostatistics, Harbin Medical University, Harbin, China.

出版信息

J Biopharm Stat. 2011 Jan;21(1):77-93. doi: 10.1080/10543406.2010.494267.

Abstract

In clinical trials, examining the adjusted treatment difference has become the preferred way to establish non-inferiority (NI) in cases involving a binary endpoint. However, current methods are inadequate in the area of covariate adjustment. In this paper, we introduce two new methods, nonparametric and parametric, of using the probability and probability (P-P) curve to address the issue of unadjusted categorical covariates in the traditional assessment of NI in clinical trials. We also show that the area under the P-P curve is a valid alternative for assessing NI using the adjusted treatment difference, and we compute this area using Mann-Whitney nonparametric statistics. Our simulation studies demonstrate that our proposed methods can not only control type I error at a predefined significance level but also achieve higher statistical power than those of traditional parametric and nonparametric methods that overlook covariate adjustment, especially when covariates are unbalanced in the two treatment groups. We illustrate the effectiveness of our methodology with data from clinical trials of a therapy for coronary heart disease.

摘要

在临床试验中,对于涉及二元终点的情况,检验调整后的治疗差异已成为确立非劣效性(NI)的首选方法。然而,当前方法在协变量调整方面存在不足。在本文中,我们引入了两种新方法,即非参数法和参数法,利用概率与概率(P-P)曲线来解决临床试验中传统NI评估中未调整分类协变量的问题。我们还表明,P-P曲线下的面积是使用调整后的治疗差异评估NI的有效替代方法,并且我们使用曼-惠特尼非参数统计量来计算该面积。我们的模拟研究表明,我们提出的方法不仅可以在预定义的显著性水平上控制I型错误,而且比那些忽略协变量调整的传统参数法和非参数法具有更高的统计功效,尤其是当两个治疗组中的协变量不均衡时。我们用一项冠心病治疗临床试验的数据说明了我们方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验