Suppr超能文献

建立人骨髓增生异常综合征的异种移植模型。

Establishment of a xenograft model of human myelodysplastic syndromes.

机构信息

Research Center for Regenerative Medicine, Division of Hematopoiesis, Tokai University School of Medicine, Isehara, Japan.

出版信息

Haematologica. 2011 Apr;96(4):543-51. doi: 10.3324/haematol.2010.027557. Epub 2010 Dec 29.

Abstract

BACKGROUND

To understand how myelodysplastic syndrome cells evolve from normal stem cells and gain competitive advantages over normal hematopoiesis, we established a murine xenograft model harboring bone marrow cells from patients with myelodysplastic syndromes or acute myeloid leukemia with myelodysplasia-related changes.

DESIGN AND METHODS

Bone marrow CD34(+) cells obtained from patients were injected, with or without human mesenchymal stem cells, into the bone marrow of non-obese diabetic/severe combined immunodeficient/IL2Rγ(null) hosts. Engraftment and differentiation of cells derived from the patients were investigated by flow cytometry and immunohistochemical analysis.

RESULTS

Co-injection of patients' cells and human mesenchymal stem cells led to successful engraftment of patient-derived cells that maintained the immunophenotypes and genomic abnormalities of the original patients. Myelodysplastic syndrome-originated clones differentiated into mature neutrophils, megakaryocytes, and erythroblasts. Two of the samples derived from patients with acute myeloid leukemia with myelodysplasia-related changes were able to sustain neoplastic growth into the next generation while these cells had limited differentiation ability in the murine host. The hematopoiesis of mice engrafted with patients' cells was significantly suppressed even when human cells accounted for less than 1% of total marrow mononuclear cells. Histological studies revealed invasion of the endosteal surface by patient-derived CD34(+) cells and disruption of extracellular matrix architecture, which probably caused inhibition of murine hematopoiesis.

CONCLUSIONS

We established murine models of human myelodysplastic syndromes using cells obtained from patients: the presence of neoplastic cells was associated with the suppression of normal host hematopoiesis. The efficiency of engraftment was related to the presence of an abnormality in chromosome 7.

摘要

背景

为了了解骨髓增生异常综合征细胞如何从正常干细胞演变并获得相对于正常造血的竞争优势,我们建立了一个携带骨髓增生异常综合征或具有骨髓增生异常相关改变的急性髓系白血病患者骨髓细胞的小鼠异种移植模型。

设计与方法

从患者中获得骨髓 CD34(+)细胞,在有无人类间充质干细胞的情况下,将其注入非肥胖型糖尿病/严重联合免疫缺陷/IL2Rγ(null)宿主的骨髓中。通过流式细胞术和免疫组织化学分析研究来自患者的细胞的植入和分化。

结果

患者细胞与人骨髓间充质干细胞共注射导致患者来源细胞的成功植入,这些细胞保持了原始患者的免疫表型和基因组异常。骨髓增生异常综合征起源的克隆分化为成熟的中性粒细胞、巨核细胞和红细胞。来自具有骨髓增生异常相关改变的急性髓系白血病的两个样本能够维持肿瘤生长到下一代,而这些细胞在小鼠宿主中具有有限的分化能力。即使患者细胞占骨髓单个核细胞总数的不到 1%,植入患者细胞的小鼠的造血也受到明显抑制。组织学研究显示患者来源的 CD34(+)细胞侵袭骨内膜表面并破坏细胞外基质结构,这可能导致小鼠造血抑制。

结论

我们使用从患者中获得的细胞建立了人类骨髓增生异常综合征的小鼠模型:肿瘤细胞的存在与正常宿主造血的抑制有关。植入效率与染色体 7 异常的存在有关。

相似文献

1
Establishment of a xenograft model of human myelodysplastic syndromes.
Haematologica. 2011 Apr;96(4):543-51. doi: 10.3324/haematol.2010.027557. Epub 2010 Dec 29.
3
Humanized three-dimensional scaffold xenotransplantation models for myelodysplastic syndromes.
Exp Hematol. 2022 Mar;107:38-50. doi: 10.1016/j.exphem.2021.12.395. Epub 2021 Dec 22.
9
Architectural and functional heterogeneity of hematopoietic stem/progenitor cells in non-del(5q) myelodysplastic syndromes.
Blood. 2017 Jan 26;129(4):484-496. doi: 10.1182/blood-2016-03-707745. Epub 2016 Nov 16.

引用本文的文献

2
The evolution of preclinical models for myelodysplastic neoplasms.
Leukemia. 2024 Apr;38(4):683-691. doi: 10.1038/s41375-024-02181-2. Epub 2024 Feb 23.
3
Progress in construction of mouse models to investigate the pathogenesis and immune therapy of human hematological malignancy.
Front Immunol. 2023 Aug 14;14:1195194. doi: 10.3389/fimmu.2023.1195194. eCollection 2023.
4
Comprehensive comparison of gene expression diversity among a variety of human stem cells.
NAR Genom Bioinform. 2022 Nov 29;4(4):lqac087. doi: 10.1093/nargab/lqac087. eCollection 2022 Dec.
5
Selective inhibition of MCL1 overcomes venetoclax resistance in a murine model of myelodysplastic syndromes.
Haematologica. 2023 Feb 1;108(2):522-531. doi: 10.3324/haematol.2022.280631.
6
GATA2 deficiency and MDS/AML: Experimental strategies for disease modelling and future therapeutic prospects.
Br J Haematol. 2022 Nov;199(4):482-495. doi: 10.1111/bjh.18330. Epub 2022 Jun 26.
7
The Coming of Age of Preclinical Models of MDS.
Front Oncol. 2022 Mar 16;12:815037. doi: 10.3389/fonc.2022.815037. eCollection 2022.
8
Preclinical characterisation and development of a novel myelodysplastic syndrome-derived cell line.
Br J Haematol. 2021 Apr;193(2):415-419. doi: 10.1111/bjh.17372. Epub 2021 Mar 9.
9
[Advances on mouse transplantation model of myelodysplastic syndrome].
Zhonghua Xue Ye Xue Za Zhi. 2020 Apr 14;41(4):344-347. doi: 10.3760/cma.j.issn.0253-2727.2020.04.017.
10
Myelodysplastic syndrome patient-derived xenografts: from no options to many.
Haematologica. 2020 Apr;105(4):864-869. doi: 10.3324/haematol.2019.233320. Epub 2020 Mar 19.

本文引用的文献

1
Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia.
Nature. 2010 Apr 8;464(7290):852-7. doi: 10.1038/nature08851. Epub 2010 Mar 21.
2
Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML.
Nat Biotechnol. 2010 Mar;28(3):275-80. doi: 10.1038/nbt.1607. Epub 2010 Feb 14.
5
Quiescent human hematopoietic stem cells in the bone marrow niches organize the hierarchical structure of hematopoiesis.
Stem Cells. 2008 Dec;26(12):3228-36. doi: 10.1634/stemcells.2008-0552. Epub 2008 Sep 11.
8
Myelodysplastic syndromes.
Blood. 2008 May 15;111(10):4841-51. doi: 10.1182/blood-2007-08-078139.
9
Biological and clinical relevance of matrix metalloproteinases 2 and 9 in acute myeloid leukaemias and myelodysplastic syndromes.
Eur J Haematol. 2008 Mar;80(3):216-26. doi: 10.1111/j.1600-0609.2007.01012.x. Epub 2007 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验