Suppr超能文献

为了更好地理解植物中果聚糖结构多样性的产生:多年生黑麦草(Lolium perenne)中蔗糖:果聚糖 6-果糖基转移酶(6-SFT)cDNA 的分子和功能特征。

Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne).

机构信息

UMR INRA-UCBN 950 EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Université de Caen, Esplanade de la Paix, 14032 Caen Cedex, France.

出版信息

J Exp Bot. 2011 Mar;62(6):1871-85. doi: 10.1093/jxb/erq388. Epub 2010 Dec 31.

Abstract

The main storage compounds in Lolium perenne are fructans with prevailing β(2-6) linkages. A cDNA library of L. perenne was screened using Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length Lp6-SFT clone was isolated as shown by heterologous expression in Pichia pastoris. High levels of Lp6-SFT transcription were found in the growth zone of elongating leaves and in mature leaf sheaths where fructans are synthesized. Upon fructan synthesis induction, Lp6-SFT transcription was high in mature leaf blades but with no concomitant accumulation of fructans. In vitro studies with the recombinant Lp6-SFT protein showed that both 1-kestotriose and 6G-kestotriose acted as fructosyl acceptors, producing 1- and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose, respectively. Interestingly, bifurcose formation ceased and 6G,6-kestotetraose was formed instead, when recombinant fructan:fructan 6G-fructosyltransferase (6G-FFT) of L. perenne was introduced in the enzyme assay with sucrose and 1-kestotriose as substrates. The remarkable absence of bifurcose in L. perenne tissues might be explained by a higher affinity of 6G-FFT, as compared with 6-SFT, for 1-kestotriose, which is the first fructan formed. Surprisingly, recombinant 6-SFT from Hordeum vulgare, a plant devoid of fructans with internal glucosyl residues, also produced 6G,6-kestotetraose from sucrose and 6G-kestotriose. In the presence of recombinant L. perenne 6G-FFT, it produced 6G,6-kestotetraose from 1-kestotriose and sucrose, like L. perenne 6-SFT. Thus, we demonstrate that the two 6-SFTs have close catalytic properties and that the distinct fructans formed in L. perenne and H. vulgare can be explained by the presence of 6G-FFT activity in L. perenne and its absence in H. vulgare.

摘要

黑麦草中的主要储存化合物是果糖基转移酶(6-SFT),主要以β(2-6)键为主。本研究利用 Poa secunda 蔗糖:果糖基转移酶(6-SFT)作为探针,从黑麦草 cDNA 文库中筛选出全长 Lp6-SFT 克隆。通过在毕赤酵母中异源表达,证明了 Lp6-SFT 转录本的存在。在伸长叶片的生长区和成熟叶鞘中发现了高水平的 Lp6-SFT 转录,而在成熟叶鞘中合成了果糖基转移酶。在果糖基转移酶合成诱导后,成熟叶片的 Lp6-SFT 转录水平很高,但没有伴随果糖基转移酶的积累。体外研究表明,重组 Lp6-SFT 蛋白既可以作为 1-菊三糖的果糖基受体,也可以作为 6G-菊三糖的果糖基受体,分别生成 1-和 6-菊四糖(分叉果糖基转移酶)和 6G,6-菊四糖。有趣的是,当重组果糖基转移酶:6G-果糖基转移酶(6G-FFT)引入以蔗糖和 1-菊三糖为底物的酶促反应中时,分叉果糖基转移酶的形成停止,而形成 6G,6-菊四糖。在黑麦草组织中显著缺乏分叉果糖基转移酶可能是由于 6G-FFT 与 6-SFT 相比,对作为第一个形成的果糖基转移酶的 1-菊三糖具有更高的亲和力。令人惊讶的是,缺乏内源性葡萄糖基的大麦 6-SFT 重组酶也能从蔗糖和 6G-菊三糖中产生 6G,6-菊四糖。在重组黑麦草 6G-FFT 的存在下,它可以从 1-菊三糖和蔗糖中产生 6G,6-菊四糖,就像黑麦草 6-SFT 一样。因此,我们证明了这两种 6-SFT 具有密切的催化特性,并且在黑麦草和大麦中形成的不同果糖基转移酶可以通过在黑麦草中存在 6G-FFT 活性而在大麦中不存在来解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34ce/3060680/9678188053e6/jexboterq388f01_lw.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验