Department of Physics, College of Science, Yasouj University, Yasouj 75919, Iran.
J Chem Phys. 2010 Dec 28;133(24):244701. doi: 10.1063/1.3520148.
This article applies the density functional theory to confined liquid crystals, comprised of ellipsoidal shaped particles interacting through the hard Gaussian overlap (HGO) potential. The extended restricted orientation model proposed by Moradi and co-workers [J. Phys.: Condens. Matter 17, 5625 (2005)] is used to study the surface anchoring. The excess free energy is calculated as a functional expansion of density around a reference homogeneous fluid. The pair direct correlation function (DCF) of a homogeneous HGO fluid is approximated, based on the optimized sum of Percus-Yevick and Roth DCF for hard spheres; the anisotropy introduced by means of the closest approach parameter, the expression proposed by Marko [Physica B 392, 242 (2007)] for DCF of HGO, and hard ellipsoids were used. In this study we extend an our previous work [Phys. Rev. E 72, 061706 (2005)] on the anchoring behavior of hard particle liquid crystal model, by studying the effect of changing the particle-substrate contact function instead of hard needle-wall potentials. We use the two particle-surface potentials: the HGO-sphere and the HGO-surface potentials. The average number density and order parameter profiles of a confined HGO fluid are obtained using the two particle-wall potentials. For bulk isotropic liquid, the results are in agreement with the Monte Carlo simulation of Barmes and Cleaver [Phys. Rev. E 71, 021705 (2005)]. Also, for the bulk nematic phase, the theory gives the correct density profile and order parameter between the walls.
本文将密度泛函理论应用于受限液晶中,这些液晶由通过硬高斯重叠(HGO)势相互作用的椭圆形粒子组成。Moradi 及其同事提出的扩展受限取向模型[J. Phys.:Condens. Matter 17, 5625(2005)]用于研究表面锚定。过剩自由能作为参考均匀流体周围密度的函数展开进行计算。基于硬球的优化 Percus-Yevick 和 Roth DCF 之和,近似计算了均匀 HGO 流体的对直接相关函数(DCF);通过最接近参数引入各向异性,Marko [Physica B 392, 242(2007)] 提出的 HGO 和硬椭球的 DCF 表达式。在这项研究中,我们通过研究改变粒子-基底接触函数而不是硬针-壁势对硬粒子液晶模型的锚定行为的影响,扩展了我们之前的工作[Phys. Rev. E 72, 061706(2005)]。我们使用两种粒子-表面势:HGO-球和 HGO-表面势。使用这两种粒子-壁势获得受限 HGO 流体的平均密度和序参量分布。对于各向同性液体,结果与 Barnes 和 Cleaver 的蒙特卡罗模拟[Phys. Rev. E 71, 021705(2005)]一致。此外,对于体各向异性相,理论给出了壁之间正确的密度分布和序参量。