Department of Geology and Geophysics, Yale University, New Haven, CT 06520-8109, USA.
J Phys Condens Matter. 2010 Sep 15;22(36):364107. doi: 10.1088/0953-8984/22/36/364107. Epub 2010 Aug 20.
In a recent publication (Hansen-Goos and Mecke 2009 Phys. Rev. Lett. 102 018302) we constructed a free energy functional for the inhomogeneous hard-body fluid, which reduces to Rosenfeld's fundamental measure theory (Rosenfeld 1989 Phys. Rev. Lett. 63 980) when applied to hard spheres. The new functional is able to yield the isotropic-nematic transition for the hard-spherocylinder fluid in contrast to Rosenfeld's fundamental measure theory for non-spherical particles (Rosenfeld 1994 Phys. Rev. E 50 R3318). The description of inhomogeneous isotropic fluids is also improved when compared with data from Monte Carlo simulations for hard spherocylinders in contact with a planar hard wall. However, the new functional for the inhomogeneous fluid in general does not comply with the exact second order virial expansion. We introduced the ζ correction in order to minimize the deviation from Onsager's exact result in the isotropic bulk fluid. In this article we give a detailed account of the construction of the new functional. An extension of the ζ correction makes the latter better suited for non-isotropic particle distributions. The extended ζ correction is shown to improve the description of the isotropic-nematic bulk phase diagram while it has little effect on the results for the isotropic but inhomogeneous hard-spherocylinder fluid. We argue that the gain from using higher order tensorial weighted densities in the theory is likely to be inferior to the associated increase in complexity.
在最近的一篇出版物(Hansen-Goos 和 Mecke 2009 Phys. Rev. Lett. 102 018302)中,我们构建了不均匀硬球流体的自由能泛函,当应用于硬球时,它简化为罗森菲尔德的基本测量理论(Rosenfeld 1989 Phys. Rev. Lett. 63 980)。与罗森菲尔德的非球形粒子基本测量理论(Rosenfeld 1994 Phys. Rev. E 50 R3318)相比,新的泛函能够产生硬球棒状流体的各向同性-向列相转变。与硬球棒状与平面硬壁接触的蒙特卡罗模拟数据相比,不均匀各向同性流体的描述也得到了改善。然而,与各向同性本体流体的精确二阶维里展开相比,新的不均匀流体泛函通常不满足。我们引入了 ζ 修正,以最小化各向同性本体流体中昂萨格精确结果的偏差。在本文中,我们详细介绍了新泛函的构造。ζ 修正的扩展使后者更适合非各向同性粒子分布。扩展的 ζ 修正被证明可以改善各向同性-向列体相图的描述,而对各向同性但不均匀的硬球棒状流体的结果影响不大。我们认为,在理论中使用更高阶张量加权密度的收益可能不如相关的复杂性增加。